探寻大模型回答9.9和9.11犯错的根本原因

  大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。

  本文主要介绍了探寻大模型回答9.9和9.11犯错的根本原因,希望对使用大语言模型的同学们有所帮助。

1. 前言

  这几天在互联网看到不少批评大模型弱智的文章,根源是比较9.9和9.11出现了错误。比如大模型的巨无霸GPT-4o,出乎很多人的意料,回答也是错误的。

在这里插入图片描述

  客观来说,此等错误当属低级错误,如果只停留在批评或者看乐子的层面上,就显得毫无意义。而如果去分析它的原因,并且深入理解它的运行原理,就会对我们使用和微调大模型更有帮助。

数据集介绍:塑料瓶硬币目标检测数据集 一、基础信息 数据集名称:塑料瓶硬币目标检测数据集 数据规模: - 训练集:5,699张图片 - 验证集:885张图片 - 测试集:414张图片 分类类别: - Plastic(塑料制品):涵盖常见塑料物品的检测 - Bottle(瓶类):包括各类塑料瓶及其他瓶型 - Coin(硬币):多国硬币的识别与定位 标注格式: YOLO格式标注,包含边界框坐标及类别标签,适配主流目标检测框架 二、适用场景 环保回收系统开发: 支持构建智能垃圾分类模型,精准识别塑料制品与瓶类,助力自动化分拣流水线建设。 零售自动化设备: 适用于自动售货机硬币识别模块开发,提升支付系统的准确性与可靠性。 计算机视觉教学: 提供多目标检测场景,适合目标检测算法教学与实验验证。 工业质检应用: 可用于塑料制品生产线中的缺陷检测或产品分类场景。 三、数据集优势 类别覆盖精准: 包含塑料制品、瓶类、硬币三大垂直类别,覆盖环保、零售等核心应用场景需求。 标注质量优异: 严格校验的YOLO格式标注,边界框定位精准,支持高精度目标检测模型训练。 场景多样性丰富: 数据包含不同光照条件下的硬币、多角度瓶体形态、多样化塑料制品,增强模型泛化能力。 工业适配性强: 数据规模适配工业级模型训练需求,支持从实验研究到实际部署的全流程开发。
评论 42
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

herosunly

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值