线性回归算法

目录

1.概念

2.例子

3.线性回归经常使⽤的两种优化算法

3.0背景(损失函数)

3.1正规⽅程

3.2梯度下降

 3.3两个方法对比

4.岭回归

 5.模型的保存和加载

1.概念

 

线性回归(Linear regression)是利⽤回归⽅程(函数)对⼀个或多个⾃变量(特征值)和因变量(⽬标值)之间关系进⾏建模的 ⼀种分析⽅式。

理解为: 1.期末成绩:0.7×考试成绩+0.3×平时成绩

2.房⼦价格 = 0.02×中⼼区域的距离 + 0.04×城市⼀氧化氮浓度 + (-0.12×⾃住房平均房价) + 0.254×城镇犯罪率

2.例子

from sklearn.linear_model import LinearRegression

x = [[80, 86],
[82, 80],
[85, 78],
[90, 90],
[86, 82],
[82, 90],
[78, 80],
[92, 94]]
#第一列平均成绩,第二列期末成绩
y = [84.2, 80.6, 80.1, 90, 83.2, 87.6, 79.4, 93.4]
# 实例化API
estimator = LinearRegression()
# 使⽤fit⽅法进⾏训练
estimator.fit(x,y)
prediction=estimator.predict([[100, 80]])
print(prediction)
print(estimator.coef_)

3.线性回归经常使⽤的两种优化算法

3.0背景(损失函数)

 y 为第i个训练样本的真实值  h(x )为第i个训练样本特征值组合预测函数

⼜称最⼩⼆乘法,求损失函数最小值

3.1正规⽅程

理解:X为特征值矩阵,y为⽬标值矩阵。直接求到最好的结果

缺点:当特征过多过复杂时,求解速度太慢并且得不到结果

from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error


# 1.获取数据
data = load_boston()
# 2.数据集划分
x_train, x_test, y_train, y_test = train_test_split(data.data, data.target, random_state=22) #数据划分默认0.25
# 3.特征⼯程-标准化
transfer = StandardScaler()
x_train = transfer.fit_transform(x_train)
x_test = transfer.fit_transform(x_test)
# 4.机器学习-线性回归(正规⽅程)
estimator = LinearRegression()
estimator.fit(x_train, y_train)
# 5.模型评估
# 5.1 获取系数等值
y_predict = estimator.predict(x_test)
print("预测值为:\n", y_predict)
print("模型中的系数为:\n", estimator.coef_)
print("模型中的偏置为:\n", estimator.intercept_)
# 5.2 评价
# 均⽅误差
error = mean_squared_error(y_test, y_predict)
print("误差为:\n", error)

3.2梯度下降

 1.α在梯度下降算法中被称作为学习率或者步⻓,意味着我们可以通过α来控制每⼀步⾛的距离,走太快,错过最低点,走太慢,效率慢

2.梯度的⽅向实际就是函数在此点上升最快的 ⽅向!⽽我们需要朝着下降最快的⽅向⾛,⾃然就是负的梯度的⽅向

 公式步骤演示:我们假设有⼀个单变量的函数 :J(θ) = θ 函数的微分:J (θ) = 2θ 初始化,起点为: θ = 1 学习率:α = 0.4

 如图,经过四次的运算,也就是⾛了四步,基本就抵达了函数的最低点,也就是⼭底

 3.3两个方法对比

梯度下降法和正规⽅程选择依据

⼩规模数据: 正规⽅程:LinearRegression(不能解决拟合问题)

                        岭回归

⼤规模数据: 梯度下降法:SGDRegressor 

4.岭回归

from sklearn.linear_model import Ridge,RidgeCV
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error


# 1.获取数据
data = load_boston()
# 2.数据集划分
x_train, x_test, y_train, y_test = train_test_split(data.data, data.target, random_state=22) #数据划分默认0.25
# 3.特征⼯程-标准化
transfer = StandardScaler()
x_train = transfer.fit_transform(x_train)
x_test = transfer.fit_transform(x_test)
# 4.机器学习-线性回归(岭回归)
estimator = Ridge(alpha=1) #alpha为正则化
# estimator = RidgeCV(alphas=(0.1, 1, 10))
estimator.fit(x_train, y_train)
# 5.模型评估
# 5.1 获取系数等值
y_predict = estimator.predict(x_test)
print("预测值为:\n", y_predict)
print("模型中的系数为:\n", estimator.coef_)
print("模型中的偏置为:\n", estimator.intercept_)
# 5.2 评价
# 均⽅误差
error = mean_squared_error(y_test, y_predict)
print("误差为:\n", error)

 5.模型的保存和加载

from sklearn.linear_model import Ridge,RidgeCV
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
import joblib

# 1.获取数据
data = load_boston()
# 2.数据集划分
x_train, x_test, y_train, y_test = train_test_split(data.data, data.target, random_state=22) #数据划分默认0.25
# 3.特征⼯程-标准化
transfer = StandardScaler()
x_train = transfer.fit_transform(x_train)
x_test = transfer.fit_transform(x_test)
# 4.机器学习-线性回归(岭回归)
# #4.1模型训练
# estimator = Ridge(alpha=1) #alpha为正则化
# # estimator = RidgeCV(alphas=(0.1, 1, 10))
# estimator.fit(x_train, y_train)
# #4.2模型保存
# joblib.dump(estimator,"./machineLearnCode/LinearRegressionTest/test.pkl")
#4.3模型加载
estimator=joblib.load("./machineLearnCode/LinearRegressionTest/test.pkl")

# 5.模型评估
# 5.1 获取系数等值
y_predict = estimator.predict(x_test)
print("预测值为:\n", y_predict)
print("模型中的系数为:\n", estimator.coef_)
print("模型中的偏置为:\n", estimator.intercept_)
# 5.2 评价
# 均⽅误差
error = mean_squared_error(y_test, y_predict)
print("误差为:\n", error)

 

 

  • 2
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
线性回归算法的发展历程可以追溯到19世纪末。以下是线性回归算法的发展历程: 1. 19世纪末,高尔顿和他的学生K·Pearson观察了1078对夫妇,以每对夫妇的平均身高作为自变量,取他们的一个成年儿子的身高作为因变量。他们发现父母身高和子代身高之间存在近乎一条直线的关系,即回归直线方程为:y^=33.73+0.516x。这是线性回归算法的最早应用之一。 2. 在20世纪初,统计学家卡尔·皮尔逊进一步发展了线性回归算法。他提出了最小二乘法,用于拟合回归直线并估计回归系数。最小二乘法通过最小化残差平方和来确定最佳拟合直线,使得预测值与实际观测值之间的差异最小化。 3. 在20世纪中叶,计算机的发展使得线性回归算法得以广泛应用。计算机的出现使得回归分析的计算更加高效和准确。此时,线性回归算法开始在各个领域得到广泛应用,包括经济学、社会科学、医学等。 4. 随着时间的推移,线性回归算法不断发展和改进。研究人员提出了各种改进的线性回归模型,如多元线性回归、岭回归、lasso回归等。这些改进的模型考虑了更多的因素和变量,提高了模型的预测能力和解释能力。 5. 近年来,随着机器学习和深度学习的兴起,线性回归算法也得到了进一步的发展。线性回归算法被用作其他更复杂模型的基础,如神经网络中的线性层。 总结起来,线性回归算法的发展历程可以追溯到19世纪末,经过了统计学家的研究和改进,以及计算机的发展,逐渐成为一种广泛应用的预测和分析工具。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值