1.衡量一个算法好坏的标准在于其算法效率高,算法效率分为时间复杂度和空间复杂度,时间复杂度主要衡量一个算法的运行速度,空间复杂度主要衡量一个算法所需要的额外空间。一个算法好应该时间复杂度最低,空间复杂度最小。
2.时间复杂度就是衡量一个算法的运行速度,也就是时间效率。
3.算法的时间复杂度是一个函数,他定量描述了该算法的运行时间,一个算法执行所耗费的时间,是不能算出来的,是基本操作的执行次数。
4.时间复杂度的O渐进表示法,计算的是大概执行次数,是用于描述函数渐进行为的数学符号。(1)用常数1取代运行时间中的所有加法常数。(2)在修改后的运行次数函数中,只保留最高阶项。(3)如果最高阶项存在且不是1,则去除与这个项目相乘的常数,得到的结果就是O阶。
5.时间复杂度存在最好,平均和最坏情况:
最坏情况:任意输入规模的最大运行次数(N次找到)
平均情况:任意输入规模的期望运行次数(N/2次找到)
最好情况:任意输入规模的最小运行次数(1次找到)
时间复杂度看得是最坏情况,因为在实际中一般情况下关注的是算法的最坏运行情况。
6.二分查找
int arr[10]={0,1,2,3,4,5,6,7,8,9};
int size=0;
scanf("%d",&size);
int left=0;
int right=sizeof(arr)/sizeof(arr[0])-1;
int mid=left+(right-left)/2;
while(left<=ri
算法效率,时间复杂度,空间复杂度
最新推荐文章于 2023-04-26 12:55:38 发布
本文介绍了衡量算法效率的两个关键指标——时间复杂度和空间复杂度。时间复杂度关注算法运行速度,通过O渐进表示法来描述,通常关注最坏情况。二分查找的时间复杂度为O(logN),而递归求斐波那契数列的时间复杂度为O(2^N)。空间复杂度则关注算法运行过程中所需的额外空间,如递归求斐波那契数列的空间复杂度为O(N),而优化后的斐波那契算法空间复杂度为O(1)。常见的算法时间复杂度包括:for循环的O(1),冒泡排序的O(N^2),二分法的lgN,阶乘的N,以及斐波那契数列的O(2^N)。
摘要由CSDN通过智能技术生成