三角形最小路径和

三角形最小路径和–LeetCode120

题目

给定一个三角形,找出自顶向下的最小路径和。每一步只能移动到下一行中相邻的结点上。例如,给定三角形:

[
     [2],
    [3,4],
   [6,5,7],
  [4,1,8,3]
]

自顶向下的最小路径和为 11(即,2 + 3 + 5 + 1 = 11)。

说明:如果你可以只使用 O(n) 的额外空间(n 为三角形的总行数)来解决这个问题,那么你的算法会很加分。

思路:自顶向下的动态规划。
动态规划的三步:

  • 第一步:数组的含义。dp[i] [j]表示包含第i行第j列元素的最小路径和
  • 第二步:边界条件。dp[0] [0]=triangle[0] [0]。
  • 第三步:转移方程:dp[i] [j]=min(dp[i-1] [j], dp[i-1] [j-1]) + triangle[i] [j]

存在特殊情况:没有左上角和没有右上角的情况,分别对应某一行中的第一个元素和最后一个元素。

  • 没有左上角:triangle[i] [0]没有左上角 只能从triangle[i-1] [j]经过;
  • 没有右上角:triangle[i] [col.length-1]没有上面 只能从triangle[i-1][j-1]经过。

时间复杂度:O(n2),空间复杂度:O(n2)
代码:

class Solution {
    public int minimumTotal(List<List<Integer>> triangle) {
        int n = triangle.size();
        int m = triangle.get(triangle.size()-1).size();
        int[][] dp = new int[n][m];
        dp[0][0] = triangle.get(0).get(0);// 初始条件
        for (int i = 1; i < n; i++) {
            for (int j = 0; j <= i; j++) {
                if (j == 0) {// 没有左上角
                    dp[i][j] = dp[i-1][j]+triangle.get(i).get(j);
                }else if (j == i) {// 没有右上角
                    dp[i][j] = dp[i-1][j-1]+triangle.get(i).get(j);
                }else {
                    dp[i][j] = Math.min(dp[i-1][j], dp[i-1][j-1])+triangle.get(i).get(j);
                }
            }
        }
        int res = dp[n-1][0];
        for (int k = 1; k < m; k++) {
            if (dp[n-1][k] < res) {
                res = dp[n-1][k];
            }
        }
        return res;
    }
}

对空间的优化:对第i行的最小路径和的推导,只需要第i-1行的dp[i - 1] [j]和dp[i - 1] [j - 1]元素即可。可以使用两个变量暂存。一维的dp数组只存储第i行的最小路径和。
优化之后的空间复杂度:O(n)

class Solution {
    public int minimumTotal(List<List<Integer>> triangle) {
        int n = triangle.size();
        int[] dp = new int[n];
        // 初始条件
        dp[0] = triangle.get(0).get(0);
        int prev = 0;
        int curr;
        for (int i = 1; i < n; i++) {
            List<Integer> currRow = triangle.get(i);
            for (int j = 0; j <= i; j++) {
                curr = dp[j];
                if (j == 0) {
                    dp[j] = curr + currRow.get(j);
                }else if (j == i) {
                    dp[j] = prev + currRow.get(j);
                }else {
                    dp[j] = Math.min(prev, curr) + currRow.get(j);
                }
                prev = curr;
            }
        }
        int res = dp[0];
        for (int k = 1; k < n; k++) {
            if (dp[k] < res) {
                res = dp[k];
            }
        }
        return res;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值