三角形最小路径和–LeetCode120
题目
给定一个三角形,找出自顶向下的最小路径和。每一步只能移动到下一行中相邻的结点上。例如,给定三角形:
[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]
自顶向下的最小路径和为 11(即,2 + 3 + 5 + 1 = 11)。
说明:如果你可以只使用 O(n) 的额外空间(n 为三角形的总行数)来解决这个问题,那么你的算法会很加分。
思路:自顶向下的动态规划。
动态规划的三步:
- 第一步:数组的含义。dp[i] [j]表示包含第i行第j列元素的最小路径和
- 第二步:边界条件。dp[0] [0]=triangle[0] [0]。
- 第三步:转移方程:dp[i] [j]=min(dp[i-1] [j], dp[i-1] [j-1]) + triangle[i] [j]
存在特殊情况:没有左上角和没有右上角的情况,分别对应某一行中的第一个元素和最后一个元素。
- 没有左上角:triangle[i] [0]没有左上角 只能从triangle[i-1] [j]经过;
- 没有右上角:triangle[i] [col.length-1]没有上面 只能从triangle[i-1][j-1]经过。
时间复杂度:O(n2),空间复杂度:O(n2)
代码:
class Solution {
public int minimumTotal(List<List<Integer>> triangle) {
int n = triangle.size();
int m = triangle.get(triangle.size()-1).size();
int[][] dp = new int[n][m];
dp[0][0] = triangle.get(0).get(0);// 初始条件
for (int i = 1; i < n; i++) {
for (int j = 0; j <= i; j++) {
if (j == 0) {// 没有左上角
dp[i][j] = dp[i-1][j]+triangle.get(i).get(j);
}else if (j == i) {// 没有右上角
dp[i][j] = dp[i-1][j-1]+triangle.get(i).get(j);
}else {
dp[i][j] = Math.min(dp[i-1][j], dp[i-1][j-1])+triangle.get(i).get(j);
}
}
}
int res = dp[n-1][0];
for (int k = 1; k < m; k++) {
if (dp[n-1][k] < res) {
res = dp[n-1][k];
}
}
return res;
}
}
对空间的优化:对第i行的最小路径和的推导,只需要第i-1行的dp[i - 1] [j]和dp[i - 1] [j - 1]元素即可。可以使用两个变量暂存。一维的dp数组只存储第i行的最小路径和。
优化之后的空间复杂度:O(n)
class Solution {
public int minimumTotal(List<List<Integer>> triangle) {
int n = triangle.size();
int[] dp = new int[n];
// 初始条件
dp[0] = triangle.get(0).get(0);
int prev = 0;
int curr;
for (int i = 1; i < n; i++) {
List<Integer> currRow = triangle.get(i);
for (int j = 0; j <= i; j++) {
curr = dp[j];
if (j == 0) {
dp[j] = curr + currRow.get(j);
}else if (j == i) {
dp[j] = prev + currRow.get(j);
}else {
dp[j] = Math.min(prev, curr) + currRow.get(j);
}
prev = curr;
}
}
int res = dp[0];
for (int k = 1; k < n; k++) {
if (dp[k] < res) {
res = dp[k];
}
}
return res;
}
}