卖火柴的lly
继去年的
riba2534的拷问(1)
riba2534的拷问(2)
llyllylly也想和zj哥riba2534riba2534riba2534一样强,所以llyllylly仿照riba2534的拷问riba2534的拷问riba2534的拷问给你n根火柴棍,问你可以拼出多少个形如“A+B=C”的等式?
等式中的A、B、C是用火柴棍拼出的整数(若该数非零,则最高位不能是0)。
用火柴棍拼数字0-9的拼法如图所示:
注意:
加号与等号各自需要两根火柴棍
如果A≠B,则A+B=C与B+A=C视为不同的等式(A、B、C>=0)
nnn根火柴棍必须全部用上
Input
共一行,有一个整数n(0≤n≤24)n(0 \leq n \leq 24)n(0≤n≤24)。
Output
共一行,表示能拼成的不同等式的数目。
Sample Input 1
14
Sample Output 1
2
Sample Input 2
18
Sample Output 2
9
Hint
对于样例1:
2个等式为:
0+1=1和1+0=1。
对于样例2:
9个等式为:
0+4=4
0+11=11
1+10=11
2+2=4
2+7=9
4+0=4
7+2=9
10+1=11
11+0=11。
解题思路: 首先将每个数字需要用的火柴存放在一个整形数组p中。满足条件的等式即 i+j=k&&p[i]+p[j]=p[k]-4(加号和等号需要四根火柴)
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<stdlib.h>
#include<algorithm>
using namespace std;
int p[100005];
int main()
{
int n,i,j,k,l,o,w,u;
p[0]=6;
p[1]=2;
p[2]=5;
p[3]=5;
p[4]=4;
p[5]=5;
p[6]=6;
p[7]=3;
p[8]=7;
p[9]=6;
for(i=10; i<100; i++)
{
j=i%10;
k=i/10;
p[i]=p[j]+p[k];
}
for(i=100; i<1000; i++)
{
j=i%10;
k=i/100;
l=i/10%10;
p[i]=p[j]+p[k]+p[l];
}
for(i=1000; i<10000; i++)
{
j=i%10;
k=i/1000;
l=i/10%10;
o=i/100%10;
p[i]=p[j]+p[k]+p[l]+p[o];
}
for(i=10000; i<100000; i++)
{
j=i%10;
k=i/10000;
l=i/10%10;
o=i/100%10;
w=i/1000%10;
p[i]=p[j]+p[k]+p[l]+p[o]+p[w];
}
while(~scanf("%d",&n))
{
int a;
int sum=0;
a=n-4;
for(i=0; i<=10000; i++)
{
for(j=0; j<=10000; j++)
{
if(p[i]+p[j]+p[i+j]==a)
{
sum++;
}
}
}
printf("%d\n",sum);
}
return 0;
}