中国剩余定理

数论好难

感觉自己数论只能记个结论(甚至结论都记不住。

定义

如果有
x   m o d   m 1 = a 1   m o d   m 1 x mod m_1=a_1 mod m_1 x mod m1=a1 mod m1
x   m o d   m 2 = a 2   m o d   m 2 x mod m_2=a_2 mod m_2 x mod m2=a2 mod m2
x   m o d   m 3 = a 3   m o d   m 3 x mod m_3=a_3 mod m_3 x mod m3=a3 mod m3
. . . . . . ... ... ......
x   m o d   m n = a n   m o d   m n x mod m_n=a_n mod m_n x mod mn=an mod mn

m 1 , m 2 . . . . . . m n m_1,m_2... ...m_n m1,m2......mn两两互素, M = m 1 × m 2 × . . . × m n M=m_1\times m_2\times ...\times m_n M=m1×m2×...×mn。那么存在解 x = ( a 1 × M 1 × M 1 − 1 + a 2 × M 2 × M 2 − 1 + . . . . . . + a i × M i × M i − 1 ) m o d   M x=(a_1\times M_1\times M_1^{-1}+a_2\times M_2\times M_2^{-1}+... ...+a_i\times M_i\times M_i^{-1})mod M x=(a1×M1×M11+a2×M2×M21+......+ai×Mi×Mi1)mod M

其中 M i = M / m i M_i=M/m_i Mi=M/mi M i − 1 为 M i 关 于 模 m i 的 逆 元 M_i^{-1}为M_i关于模m_i的逆元 Mi1Mimi

练习题

AC代码:

/*
 * @Author: hesorchen
 * @Date: 2020-07-02 22:19:34
 * @LastEditTime: 2020-07-03 23:04:14
 * @Description: https://hesorchen.github.io/
 */
#include <map>
#include <set>
#include <list>
#include <queue>
#include <deque>
#include <cmath>
#include <stack>
#include <vector>
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define endl '\n'
#define PI acos(-1)
#define PB push_back
#define ll long long
#define INF 0x3f3f3f3f
#define mod 10007
#define pll pair<ll, ll>
#define lowbit(abcd) (abcd & (-abcd))
#define max(a, b) ((a > b) ? (a) : (b))
#define min(a, b) ((a < b) ? (a) : (b))

#define IOS                      \
    ios::sync_with_stdio(false); \
    cin.tie(0);                  \
    cout.tie(0);
#define FRE                              \
    {                                    \
        freopen("in.txt", "r", stdin);   \
        freopen("out.txt", "w", stdout); \
    }

inline ll read()
{
    ll x = 0, f = 1;
    char ch = getchar();
    while (ch < '0' || ch > '9')
    {
        if (ch == '-')
            f = -1;
        ch = getchar();
    }
    while (ch >= '0' && ch <= '9')
    {
        x = (x << 1) + (x << 3) + (ch ^ 48);
        ch = getchar();
    }
    return x * f;
}
//==============================================================================

void exgcd(ll a, ll b, ll &x, ll &y)
{
    if (!b)
    {
        x = 1;
        y = 0;
        return;
    }
    exgcd(b, a % b, x, y);
    ll temp = x;
    x = y;
    y = temp - (a / b) * y;
}

int main()
{
    ll a[5], m[5], d, t = 1;
    m[1] = 23, m[2] = 28, m[3] = 33;

    while (cin >> a[1] >> a[2] >> a[3] >> d)
    {
        if (a[1] == a[2] && a[2] == a[3] && a[3] == d && d == -1)
            break;

        ll M = m[1] * m[2] * m[3], ans = 0, x, y, temp;

        temp = M / m[1];
        exgcd(temp, m[1], x, y);
        ans += a[1] * temp * x % M;

        temp = M / m[2];
        exgcd(temp, m[2], x, y);
        ans += a[2] * temp * x % M;

        temp = M / m[3];
        exgcd(temp, m[3], x, y);
        ans += a[3] * temp * x % M;

        ans -= d;
        ans = (ans + M) % M;
        if (ans == 0)
            ans = M;
        cout << "Case " << t++ << ": the next triple peak occurs in " << ans << " days." << endl;
    }
    return 0;
}
参考资料:
  1. poj 1006 与 中国剩余定理
  2. 中国剩余定理
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

hesorchen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值