发现很多都忘了,重新看看。
找了个简单的最短路板子题测试代码:POJ 2387
普通版迪杰斯特拉
迪杰斯特拉算法(Dijkstra)是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法。是从一个顶点到其余各顶点的最短路径算法,解决的是有权图中最短路径问题。迪杰斯特拉算法主要特点是从起始点开始,采用贪心算法的策略,每次遍历到始点距离最近且未访问过的顶点的邻接节点,直到扩展到终点为止。
显然是 O ( n 2 ) O(n^2) O(n2)的时间复杂度。
代码:
ll mp[1010][1010];
ll dis[1010], vis[1010];
int main()
{
fill(mp[0], mp[0] + 1010 * 1010, INF);
for (int i = 1; i <= 1000; i++)
mp[i][i] = 0;
ll t, n;
cin >> t >> n;
while (t--)
{
ll u, v, w;
cin >> u >> v >> w;
mp[u][v] = mp[v][u] = min(mp[u][v], w);
}
fill(dis, dis + 1010, INF);
dis[1] = 0;
for (int i = 1; i <= n; i++)
{
ll minn = INF, v = -1;
for (int j = 1; j <= n; j++) //每次找距离起点最近的且没有用过的点v来进行更新
{
if (dis[j] < minn && !vis[j])
{
minn = dis[j];
v = j;
}
}
if (v == -1)
break;
vis[v] = 1;
for (int j = 1; j <= n; j++) //用找到的点v来更新其他点
if (dis[j] > dis[v] + mp[v][j])
dis[j] = dis[v] + mp[v][j];
}
cout << dis[n] << endl;
}
堆优化迪杰斯特拉
普通版迪杰斯特拉的时间复杂度为
O
(
n
2
)
O(n^2)
O(n2)
优化1:我们可以用一个小顶堆来
O
(
1
)
O(1)
O(1)取最近的点v,插入点的时间复杂度为
O
(
l
o
g
n
)
O(logn)
O(logn)
优化2:松弛操作不需要遍历所有点,只需要找和点v相连的点即可,因此可以用邻接表或者链式前向星进行优化
到此,堆优化+链式前向星优化的迪杰斯特拉的时间复杂度为 O ( m l o g n ) O(m log n) O(mlogn),其中n是顶点数,m是边数。
代码:
ll dis[1010];
ll head[1010];
struct node
{
ll v, w, next;
} e[10010];
ll ct = 1;
void add(ll u, ll v, ll w)
{
e[ct].v = v;
e[ct].w = w;
e[ct].next = head[u];
head[u] = ct++;
}
priority_queue<pll> q;
ll vis[1010];
void dij(ll s)
{
fill(dis, dis + 1010, INF);
dis[s] = 0;
q.push(make_pair(0, 1));
while (q.size())
{
ll u = q.top().second; //O1取到起点最近的点
q.pop();
if (vis[u])
continue;
vis[u] = 1;
for (int i = head[u]; i; i = e[i].next)
{
ll w = e[i].w;
ll v = e[i].v;
if (dis[v] > dis[u] + w)
{
dis[v] = dis[u] + w;
q.push(make_pair(-dis[v], v));
}
}
}
}
int main()
{
int t, n;
cin >> t >> n;
while (t--)
{
ll u, v, w;
cin >> u >> v >> w;
add(u, v, w);
add(v, u, w);
}
dij(1);
cout << dis[n] << endl;
return 0;
}