dijkstra算法实例 acwing模板题

题目要求:

输入 n m 

m行加入边,a b c  表示a到b的距离是c

输出一个整数表示从1到n的最短距离

第一道的范围到N=500,使用的是邻接矩阵.

思路:

第一步是找到当前的所有点中,找到没有延申到的最短的一个点是谁,设置为t

然后再更具这个点更新所有的点到1的最近的距离,最后循环所有的点,保证所有点都被访问到.


#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;
const int N = 510;

int g[N][N];
int dist[N];
int n,m;
bool st[N];


int dijkstra(){
    memset(dist,0x3f,sizeof dist);
    dist[1] = 0;
    for (int i = 0; i < n; i ++ )
    {
        int t = -1;
        for(int j = 1 ; j <= n ; j ++)
            if(!st[j] && (t == -1 || dist[t] > dist[j]))
                t = j;
        for(int j = 1; j <= n ; j ++)
            dist[j] = min(dist[j], dist[t] + g[t][j]);
            
        st[t] = true;
    }
    if(dist[n] == 0x3f3f3f3f) return -1;
    return dist[n];
}



int main()
{
    cin>>n>>m;
    memset(g,0x3f,sizeof g);
    
    while (m -- ){
        int a,b,c;
        scanf("%d%d%d", &a,&b,&c);
        g[a][b] = min(g[a][b],c);
            
    }
        
    cout<<dijkstra(); 
}

第二题与第一题一样区别在于范围变为10^{5} ,

需要使用堆优化,优化的部分是找到当前最近的一个点t的时候.从n方到nlogn.

同时使用的是邻接表版本的.

#include <iostream>
#include <cstring>
#include <algorithm>
#include <queue>

using namespace std;

const int N = 100010 ;
typedef pair<int, int> PII;

int h[N], e[N], w[N], ne[N], idx;
int dist[N];
bool st[N];
int n,m;

void add(int a,int b,int c){
    e[idx] = b, w[idx] = c , ne[idx] = h[a] , h[a] = idx++;
}

int dijkstra()  // 求1号点到n号点的最短路距离
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;
    priority_queue<PII,vector<PII>,greater<PII>> heap;
    heap.push({0,1});
    
    while(heap.size()){
        auto t  = heap.top();
        heap.pop();
        int ver = t.second, dis = t.first;
        if(st[ver]) continue;
        st[ver] = true;
        //与ver直接相连的是这个链表上的也就是j,dist[j] = dist[ver] + 到j的距离也就是w[i];
        for(int i = h[ver] ; i!=-1 ; i = ne[i]){
            int j = e[i];
            if(dist[j] > dis + w[i]){
                // 更新最短的路,继续按这个路找下一个最短的路
                dist[j] = dis + w[i];
                heap.push({dist[j],j});
            }
        }
    }
    if(dist[n] == 0x3f3f3f3f) return -1;
    return dist[n];
}


int main()
{
    cin>>n>>m;
    memset(h, -1, sizeof h);
    while (m -- ){
        int a,b,c;
        cin>>a>>b>>c;
        add(a, b, c);
    }
    cout << dijkstra();
}

acwing 1488最短距离

题目要求(输入)

有N个村庄,村庄之间的道路有M条,连接与上类似,从a村到b村的距离为c

同时,有k个村庄有商店,编号和村庄的对应.

最后,有Q个询问,每次询问一个编号,这个编号的村庄最近的商店的距离是多少?

输出:

输出每个询问的结果.

思路:

可以想象每个商店是独立的个体,到达不同的村庄的距离就是和之前存的dist类似.这个时候有一个空结点0号结点,直接与这些点相连,到这些商店的距离都是0.

那么要求某个村庄最近的就是从0开始到这个村庄的最短路劲,因为本身要求的就是村庄到商店的最短路,这个时候加上了一段距离为0的点开始,对这个询问没有影响,对距离也没有影响,所以反过来,求0结点到这个村庄的最短路距离就是求村庄到这些商店的最短路.

做法主要是在dijkstra算法的基础之上,
从0号结点开始到损耗也是0,每次加入小卖部的时候,从0号结点开始加入,损耗也设置成为0.

#include <iostream>
#include <cstring>
#include <algorithm>
#include <queue>

using namespace std;
typedef pair<int, int> PII;

const int N = 100010  , M = N*3;

int n,m;
int h[N],e[M],ne[M],w[M],idx;
int dist[N];
bool st[N];

void add(int a,int b,int c){
    e[idx] = b ,w[idx] = c , ne[idx] = h[a] , h[a] = idx++;
}

void dijkstra()  // 求1号点到n号点的最短路距离
{
    memset(dist, 0x3f, sizeof dist);
    dist[0] = 0;
    priority_queue<PII, vector<PII>, greater<PII>> heap;
    heap.push({0, 0});

    while (heap.size())
    {
        auto t = heap.top();
        heap.pop();

        int ver = t.second, distance = t.first;

        if (st[ver]) continue;
        st[ver] = true;

        for (int i = h[ver]; i != -1; i = ne[i])
        {
            int j = e[i];
            if (dist[j] > dist[ver] + w[i])
            {
                dist[j] = dist[ver] + w[i];
                heap.push({dist[j], j});
            }
        }
    }
}

int main()
{
    cin>>n>>m;
    memset(h,-1,sizeof h);
    while(m--){
        int a,b,c;
        scanf("%d%d%d", &a, &b , &c);
        add(a, b, c);
        add(b, a, c);
    }
    scanf("%d", &m);
    while(m--){
        int x;
        scanf("%d", &x);
        add(0,x,0);
    }
    scanf("%d", &m);
    dijkstra();
    
    while (m -- ){
        int x;
        scanf("%d", &x);
        printf("%d\n",dist[x]);
    }
    
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值