环状区间DP

合并石子

将经典的合并石子改成首位相连,即第一堆可以和最后一堆合并。

只需要预处理一下,将1到n-1堆石子放到n后面,重新构造出线性序列即可。

因为在环状序列中,最后的结果肯定是由最开始的某个[k,k+n-1]区间得到的。

代码:(找不到题目,不知正确性如何)

/*
 * @Author: hesorchen
 * @Date: 2020-12-30 16:53:18
 * @LastEditTime: 2021-01-26 16:27:50
 * @Description: 栽种绝处的花
 */
#include <bits/stdc++.h>
using namespace std;

#define ll long long
#define mod 1000000007

int a[210];
int sum[210];
int dp[210][210];
int main()
{
    memset(dp, 0x3f3f3f3f, sizeof dp);
    int n;
    cin >> n;
    for (int i = 1; i <= n; i++)
        cin >> a[i];
    for (int i = n + 1; i < 2 * n; i++) //拆解成线性序列
        a[i] = a[i - n];
    for (int i = 1; i < 2 * n; i++)
    {
        dp[i][i] = 0;
        sum[i] = sum[i - 1] + a[i];
    }
    for (int i = 2; i <= n; i++)
    {
        for (int l = 1; l + i - 1 < 2 * n; l++)
        {
            int r = l + i - 1;
            for (int mid = l; mid < r; mid++)
            {
                dp[l][r] = min(dp[l][r], dp[l][mid] + dp[mid + 1][r] + sum[r] - sum[l - 1]);
            }
        }
    }
    int ans = 0x3f3f3f3f;
    for (int i = 1; i <= n; i++) //枚举每个长度为n的区间 取最优解
        ans = min(dp[i][i + n - 1], ans);
    cout << ans << endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

hesorchen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值