dp是OI路上的一道天堑,很明显俺还在这个坑里
1. 定义
这一类问题最典型的就是合并石子问题,即在一个区间上,进行元素的合并,将相邻小的元素或者区间逐渐合并成一个大的区间,最终合并为一个大的区间,在这个过程,我们需要使得一些量取得最大值,这大概就是区间dp的定义
2. 例题
3. 思路
1.求石子合并的最大值,转移方程如下
f[i][j] = max(f[i][k]+f[k+1][j]) + sum[i][j]
2.求石子合并的最小值,转移方程如下
f[i][j] = min(f[i][k]+f[k+1][j]) + sum[i][j]
关键的点在于进行区间中间点的选取,每次选取一个合适的k值进行dp,得到这个区间内的最终值,可以说是很经典的一道题了。
对于环形的处理我们可以选择取对最后一个点进行特判,也可以选择开两倍的空间。
for(int len = 1;len < n;len++)
for(int i = 1,j = i+len;(j < 2*n)&&(i < 2*n);i++,j++)
for(int k = i;k < j;k++)
dp[i][j] = max(dp[i][j], dp[i][k] + dp[k+1][j] + sum(i,j));
for(int i = 1;i <= n;i++)
ans = max(ans, dp[i][i+n-1]);
上面大概就是主要循环的全部内容,我们先枚举区间的长度,从 1 → n − 1 1\to n-1 1→n−1,再枚举我们的起点,同时保证我们的起点和终点都在2*n的范围内,最终得到在 n − 1 n-1 n−1 长度的区间内的最大解。最小值的解法也类似, m a x → m i n max\to min max→min即可
4 基于合并石子的变种
这道题的基本意思和上面一个是一样的,只不过这次使用的相乘,本质还是一样的
对于这道题,我们可以得到的状态转移方程
f[i][j] = max(f[i][k] + f[k+1][j] + num[i]*num[j]*num[k]);
于是我们按照上面的思路去写
for(int len = 1;len < n;len++)
for(int i = 1,j = 1+len;j <= (2*n);i++,j++)
for(int k = i+1;k < j;k++)
dp[i][j] = max(dp[i][j], dp[i][k] + dp[k+1][j] + num[i]*num[j]*num[k]);