环形区间dp

本文探讨了区间动态规划(DP)在解决合并石子问题中的应用,通过定义问题、举例说明和详细解释思路,展示了如何利用DP求解最大值和最小值。以NOI1995合并石子和NOIP2006能量项链为例,阐述了如何进行状态转移,并给出了相应的代码实现。此外,还讨论了这类问题的变种及其解决策略。
摘要由CSDN通过智能技术生成

dp是OI路上的一道天堑,很明显俺还在这个坑里

1. 定义

 这一类问题最典型的就是合并石子问题,即在一个区间上,进行元素的合并,将相邻小的元素或者区间逐渐合并成一个大的区间,最终合并为一个大的区间,在这个过程,我们需要使得一些量取得最大值,这大概就是区间dp的定义

2. 例题

NOI1995合并石子

3. 思路

1.求石子合并的最大值,转移方程如下

f[i][j] = max(f[i][k]+f[k+1][j]) + sum[i][j]

2.求石子合并的最小值,转移方程如下

f[i][j] = min(f[i][k]+f[k+1][j]) + sum[i][j]

关键的点在于进行区间中间点的选取,每次选取一个合适的k值进行dp,得到这个区间内的最终值,可以说是很经典的一道题了。

对于环形的处理我们可以选择取对最后一个点进行特判,也可以选择开两倍的空间。

for(int len = 1;len < n;len++)
   for(int i = 1,j = i+len;(j < 2*n)&&(i < 2*n);i++,j++)
      for(int k = i;k < j;k++)
         dp[i][j] = max(dp[i][j], dp[i][k] + dp[k+1][j] + sum(i,j));
for(int i = 1;i <= n;i++)
   ans = max(ans, dp[i][i+n-1]);

 上面大概就是主要循环的全部内容,我们先枚举区间的长度,从 1 → n − 1 1\to n-1 1n1,再枚举我们的起点,同时保证我们的起点和终点都在2*n的范围内,最终得到在 n − 1 n-1 n1 长度的区间内的最大解。最小值的解法也类似, m a x → m i n max\to min maxmin即可

4 基于合并石子的变种

NOIP2006 能量项链

这道题的基本意思和上面一个是一样的,只不过这次使用的相乘,本质还是一样的

对于这道题,我们可以得到的状态转移方程

f[i][j] = max(f[i][k] + f[k+1][j] + num[i]*num[j]*num[k]);

于是我们按照上面的思路去写

for(int len = 1;len < n;len++)
   for(int i = 1,j = 1+len;j <= (2*n);i++,j++)
     for(int k = i+1;k < j;k++)
       dp[i][j] = max(dp[i][j], dp[i][k] + dp[k+1][j] + num[i]*num[j]*num[k]);
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值