NIPS2018深度学习(21)|亮点: 异常检测;强化学习(论文及代码)

本文介绍了NIPS2018会议上关于深度学习的亮点,包括BRUNO模型,用于异常检测;循环模型在大规模皮层预测的应用,以及关系递归神经网络(RNN)在关系推理任务中的进步。BRUNO模型通过可交换性实现高维数据的精确贝叶斯推理;循环模型能预测自然视频下视觉中枢的神经活动;RNN通过关系记忆核增强关系推理能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

[1] BRUNO: A Deep Recurrent Model for Exchangeable Data

Iryna Korshunova, Jonas Degrave, Ferenc Huszár, Yarin Gal, Arthur Gretton, Joni Dambre

Ghent University, Twitter, University of Oxford, UCL

https://papers.nips.cc/paper/7949-bruno-a-deep-recurrent-model-for-exchangeable-data.pdf

这篇文章提出一种新的模型结构,它可以使得深度学习工具在高维复杂样本中进行精确的贝叶斯推理。

本文的模型具有可交换性,在样本发生扰动时,样本的联合分布具有不变性,该特性是贝叶斯推理的核心。这种模型训练时不需要变分近似,新样本可以根据先前的样本作为条件来生成,生成新样本的代价跟它所依赖的条件集合的大小呈线性关系。

对序列多样性进行建模时,能够从短序列得到泛化性能,这类学习任务(如条件图像生成,少样本学习以及异常检测等)体现了本文结构的优势。

BRUNO模型示意图如下

640?wx_fmt=png

不同方法效果对比如下

640?wx_fmt=png

其中21对应的论文为

Matching networks forone shot learningNIPS 2016

代码地址

https://github.com/AntreasAntoniou/MatchingNetworks

https://github.com/gitabcworld/MatchingNetworks

</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值