[1] BRUNO: A Deep Recurrent Model for Exchangeable Data
Iryna Korshunova, Jonas Degrave, Ferenc Huszár, Yarin Gal, Arthur Gretton, Joni Dambre
Ghent University, Twitter, University of Oxford, UCL
https://papers.nips.cc/paper/7949-bruno-a-deep-recurrent-model-for-exchangeable-data.pdf
这篇文章提出一种新的模型结构,它可以使得深度学习工具在高维复杂样本中进行精确的贝叶斯推理。
本文的模型具有可交换性,在样本发生扰动时,样本的联合分布具有不变性,该特性是贝叶斯推理的核心。这种模型训练时不需要变分近似,新样本可以根据先前的样本作为条件来生成,生成新样本的代价跟它所依赖的条件集合的大小呈线性关系。
对序列多样性进行建模时,能够从短序列得到泛化性能,这类学习任务(如条件图像生成,少样本学习以及异常检测等)体现了本文结构的优势。
BRUNO模型示意图如下
不同方法效果对比如下
其中21对应的论文为
Matching networks forone shot learning, NIPS 2016
代码地址
https://github.com/AntreasAntoniou/MatchingNetworks
https://github.com/gitabcworld/MatchingNetworks
</