NIPS2018深度学习(29)|亮点:可逆卷积流模型;条件GANs;高斯过程先验变分自编码(论文及代码)...

本文介绍了NIPS2018会议上关于深度学习的三项研究:Glow模型利用可逆1x1卷积改进流式生成;RCGAN展示了对条件GAN在噪声标签下的鲁棒性;GPPVAE引入高斯过程作为变分自编码器的先验,以捕捉样本间的相关性。各方法在多个数据集上表现出色。
摘要由CSDN通过智能技术生成

[1] Glow: Generative Flow with Invertible 1×1 Convolutions

Diederik P. Kingma, Prafulla Dhariwal

OpenAI, Google AI

https://papers.nips.cc/paper/8224-glow-generative-flow-with-invertible-1x1-convolutions.pdf

流式生成模型(Dinh et al. 2014)在概念上具有吸引性,有以下几个原因,它能处理精确的对数似然度,能处理精确的隐变量推理,还可以并行处理训练和合成。

这篇文章提出了Glow,这是一种简单的生成式流式模型,该模型利用可逆的1×1卷积。这种方法在基准数据集上在对数似然度方面取得了显著的提升。令人吃惊的是,流式生成模型利用一般的对数似然度目标优化时,可以高效地合成和变换近似真实的大图片。

基于似然度的方法可以分为以下三类

640?wx_fmt=png

基于流的生成方法具有以下特性

640?wx_fmt=png

本文所提模型图示如下

640?wx_fmt=png

本文所提流的三个主要组成部分,逆以及对数行列式统计如下

640?wx_fmt=png

三种方法的效果对比如下

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值