Codeforces Round #703 (Div. 2) A-E 题解

Shifting Stacks
给你 n 长度的数组,每个下标包含 0 0 0- n n n 个木块 其中可以将某一位置的木块向右边平移 请问是否能凑出高度严格上升的数组 一开始想简单了 直接判断木块的和是否大于 ( 1 1 1+ ( n − 1 ) (n-1) (n1))* ( n − 1 ) (n-1) (n1)/2 但是这样是错误的 因为你不能一定凑出这样的排列 假如都在最后一列 所以需要按照符合情况所需最小木板数去做模拟 check

#include<cstdio>
#include<cstring>
#include<vector>
#include<cstring>
#include<queue>
#include<vector>
#include<map>
#include<set>
#include<iostream>
using namespace std;

#define dbg(x) cout << #x << " = " << (x) <<endl;
#define dbg2(x,y) cout << #x << " = " << (x) << " " << #y << " = " << (y) <<endl;
#define dbg3(x,y,z) cout << #x << " = " << (x) << " " << #y << " = " << (y) <<" " << #z << " = " << z <<endl;
#define ll long long
#define fi first
#define se second
#define pb push_back


const int MAX_N = 105;
ll arr[MAX_N];

int main()
{
    int t;
    scanf("%d",&t);
    while(t--)
    {
        int n,x;
        ll sum = 0;
        scanf("%d",&n);
        int ck = n*(n-1)/2;
        for(int i = 1;i<=n;++i)
        {
            scanf("%lld",&arr[i]);
        }
        bool flag = true;
        for(int i = 1;i<=n;++i)
        {
            if(sum+arr[i]<(i-1))
            {
                flag = false;
                break;
            }
            sum+=arr[i]-(i-1);
        }
        if(flag) printf("YES\n");
        else printf("NO\n");
    }

    return 0;
}

Eastern Exhibition
给你 n 个点,横纵坐标的范围是 0 − 1 e 9 0-1e9 01e9 其实这个答案是会有很多种的,想到找中点,但是一开始nc写了个dfs(zz) 其实我们考虑假设 n n n个点都在同一纵坐标,那么假如是偶数个点,在中间两个点(下标不同)之间任意平移不影响对 x x x的贡献 奇数点则不满足条件 只能按着不动 分类乘法一下即可 dfs可太秀了

#include <cstdio>
#include <cstring>
#include <vector>
#include <algorithm>
#include <iostream>
#include <set>
using namespace std;

#define debug(x) cout << #x << " = " << (x) <<endl;
#define ll long long
const int MAX_N = 200025;

ll arr[MAX_N],brr[MAX_N];


int main()
{
    int t;
    scanf("%d",&t);
    while(t--)
    {
        int n;
        scanf("%d",&n);
        for(int i = 1;i<=n;++i)
        {
            scanf("%lld",&arr[i]);scanf("%lld",&brr[i]);
        }
        sort(arr+1,arr+1+n);
        sort(brr+1,brr+1+n);
        if(n%2==0)
        {
            printf("%lld\n",(arr[n/2+1]-arr[n/2]+1)*(brr[n/2+1]-brr[n/2]+1));
        }
        else
        {
            printf("1\n");
        }
    }
    return 0;
}

Guessing the Greatest
比较有意思的交互题 给你 n n n个值不同的数组成的数组 你可以选择一个区间进行询问,题目会告诉你这个区间内第二大的数的下标是什么 要求你不超过20次查询得到最大数的下标所在地
2 2 2^ 20 20 20 次方 > 1 e 6 1e6 1e6 所以我们自然想到二分
如何进行二分呢?
我们首先对整个数组查询一次,我们知道全局第二大的数在哪,那么我们可以每次判断一个区间是否含有最大值的check表达式为 整个区间内第二大是否为全局第二大,那么经过一次check你就可以知道全局最大是在左区间还是在右区间(所在的区间查询得到的下标为一开始所求的全局第二大)那么就可以二分递归下去求解了

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<vector>
#include<map>
#include<set>
#include<string>
using namespace std;

#define dbg(x) cout << #x << " = "  << (x) << endl;

int Find(int l,int r)
{
    int x;
    printf("? %d %d\n\n",l,r);
    fflush(stdout);
    scanf("%d",&x);
    return x;
}

int main()
{
    bool flag = false;
    int n,ans;
    scanf("%d",&n);
    int xb = Find(1,n);
    if(xb<n&&Find(xb,n)==xb)
    {
        int l = xb+1, r = n;
        while(l<=r)
        {
            int mid = l+r>>1;
            int now_xb = Find(xb,mid);
            if(now_xb==xb)
            {
                flag = true;
                ans = mid;
                r = mid - 1;
            }
            else
            {
                l = mid + 1;
            }
        }
        if(flag)
        {
            printf("! %d\n",ans);
            fflush(stdout);
        }
    }
    if(xb>1&&!flag)
    {
        int l = 1,r = xb-1;
        while(l<=r)
        {
            int mid = l+r>>1;
            int now_xb = Find(mid,xb);
            if(now_xb==xb)
            {
                flag = true;
                ans = mid;
                l = mid + 1;
            }
            else
            {
                r = mid - 1;
            }
        }
        if(flag)
        {
            printf("! %d\n",ans);
            fflush(stdout);
        }
    }

    return 0;
}

Max Median
给你 n n n个数组, m m m长度,你可以选择长度大于等于 m m m的连续区间 此区间正序排序 ( n + 1 ) / 2 (n+1)/2 (n+1)/2向下取整的下标的数为 median 问你所有median中的最小值最大为多少
我们很自然的可以想到二分答案 那么怎么将二分的答案与check过程联立呢?我们很自然的想到将原数大小大于等于二分所得答案的贡献为 1 1 1,其余为 − 1 -1 1 那么我们就可以去解决如何选出长度大于等于 m m m的连续区间了
考虑前缀和 如果两个前缀和值为一样,则代表他们之间的差的值为 0 0 0,即中间这段区间可以选来 我们发现区间值为 0 0 0是没用的 会取到下标为 − 1 -1 1的数(与正序有关)所以我们只求前缀和 > 1 1 1的情况 这样我们还得同时保证长度大于 m m m 那么不难想到维护一个前缀最小值 代表前缀和的最小值 然后利用前缀和求解即可

#include<cstdio>
#include<iostream>
#include<vector>
#include<map>
#include<algorithm>
#include<cstring>
#include<set>
#include<cmath>
#include<stack>
using namespace std;
const int MAX_N = 200025;
int arr[MAX_N],brr[MAX_N],sum[MAX_N],minn[MAX_N];
map<int,int> mp;
#define dbg(x) cout << #x << " = " << (x) << endl;
#define dbg2(x,y) cout << #x << " = " << (x) << " " << #y << " = " << (y) << endl;
#define dbg3(x,y,z) cout << #x << " = " << (x) << " " << #y << " = " << (y) << " " << #z << " = " << (z) << endl;

int main()
{
    int n,m;
    scanf("%d%d",&n,&m);
    for(int i = 1;i<=n;++i)
    {
        scanf("%d",&arr[i]);
    }
    minn[0] = 0x3f3f3f3f;
    sum[0] = 0;
    int l = 1, r = n;
    while(l<=r)
    {
        bool flag = false;
        mp.clear();
        mp[0] = 0;
        int mid = l + r >>1;
        for(int i = 1;i<=n;++i)
        {
            brr[i] = (arr[i]>=mid)?1:-1;
            sum[i] = sum[i-1]+brr[i];
            if(mp.find(sum[i])==mp.end()) mp[sum[i]] = i;
            minn[i] = min(minn[i-1],sum[i]);
        }
        for(int i = m;i<=n;++i)
        {
            if(sum[i]>0) flag = true;
            if(i>m&&((sum[i]-minn[i-m])>0)) flag = true;
        }
        if(flag) l = mid + 1;
        else r = mid - 1;
    }
    printf("%d\n",r);

    return 0;
}

Paired Payment
最短路的两跳版本,由于题意比较明确,所以一上来就撸了个 n 2 n^2 n2 n 2 n^2 n2 的最短路,这要是以前 zls 肯定说是肯定过不去的,然后我又会说我来几个玄学优化(每次都会被zls反驳哈哈,过去的时光还是很美好的),那么显然我一开始也是这样做了
后来去学习了题解,发现其实 n 2 ∗ n 2 n^2*n^2 n2n2的原因是因为我们想维护边 但是图论里面有很重要的虚边的概念 用虚点连接虚边 我们得注意到这题的长度是 50 50 50(之前一直没有注意到)我们将每个点都乘 * 51 51 51 代表虚点,每条边有两个状态,作为两跳中的第一跳,则与 v * 51 51 51 + w 连一条边权为 0 0 0的边,遍历上一跳边权从 1 1 1- 50 50 50枚举作为第二条的边权 (was+w)
(was+w) 后续用大跟堆最短路所求即可

#include<cstdio>
#include<iostream>
#include<vector>
#include<map>
#include<algorithm>
#include<cstring>
#include<set>
#include<cmath>
#include<stack>
#include<queue>
using namespace std;
const int MAX_N = 200025;
const int MAX_M = 200000*51+5;
const int INF = 1e9+7;

#define ll long long
#define dbg(x) cout << #x << " = " << (x) << endl;
#define dbg2(x,y) cout << #x << " = " << (x) << " " << #y << " = " << (y) << endl;
#define dbg3(x,y,z) cout << #x << " = " << (x) << " " << #y << " = " << (y) << " " << #z << " = " << (z) << endl;

vector<pair<int,int> > vt[MAX_M];
priority_queue<pair<int,int> > q;
int dp[MAX_M];

void add(int u,int v,int w)
{
    vt[u*51].push_back(make_pair(v*51+w,0)); // middle point
    for(int was = 1;was<=50;++was)
    {
        vt[u*51+was].push_back(make_pair(v*51,(was+w)*(was+w))); // end point
    }
}

int main()
{
    int n,m,u,v,w;
    scanf("%d%d",&n,&m);
    for(int i = 1;i<=n*51;++i)
    {
        dp[i] = INF;
    }

    for(int i = 1;i<=m;++i)
    {
        scanf("%d%d%d",&u,&v,&w);
        u--,v--;
        add(u,v,w);
        add(v,u,w);
    }

    dp[0] = 0;
    q.push(make_pair(-dp[0],0));

    while(!q.empty())
    {
        pair<int,int> top = q.top();
        q.pop();
        for(auto v:vt[top.second])
        {
            if(dp[v.first]>-top.first+v.second)
            {
                dp[v.first] = -top.first+v.second;
                q.push(make_pair(-dp[v.first],v.first));
            }
        }
    }

    for(int i=0;i<n;++i)
    {
        if(dp[i*51]==INF) dp[i*51] = -1;
        i==n?printf("%d\n",dp[i*51]):printf("%d ",dp[i*51]);
    }
    return 0;
}

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页