【Atcoder E Knapsack 2】超大背包

这是一篇关于Atcoder E Knapsack 2的博客,探讨了升级版的01背包问题,其中物品的体积W达到10^9。作者在解决过程中遇到困难,通过询问他人,将问题转化为寻找最小体积以达到最大价值,并应用可达性的01背包策略。最终,通过比较dp[i]和给定体积V,确定可行解并更新答案。
摘要由CSDN通过智能技术生成

Atc E
题意 升级版的01背包 W竟然到了1e9
真的是一点头绪都没
问了下zls zls说转化一下 你既然要val最大
那么我把所有dp[i]代表到i这个价值需要最少的体积
然后用可达性的01背包取min
最后在对1 - maxv 如果dp[i]<=V 那么这个肯定是可以取到的 直接更新答案

/*
    if you can't see the repay
    Why not just work step by step
    rubbish is relaxed
    to ljq
*/
#include <cstdio>
#include <cstring>
#include <iostream>
#include <queue>
#include <cmath>
#include <map>
#include <stack>
#include <set>
#include <sstream>
#include <vector>
#include <stdlib.h>
#include <algorithm>
using namespace std;

#define dbg(x) cout<<#x<<" = "<< (x)<< endl
#define dbg2(x1,x2) cout<<#x1<<" = "<<x1<<" "<<#x2<<" = "<<x2<<endl
#define dbg3(x1,x2,x3) cout<<#x1<<" = "<<x1<<" "<<#x2<<" = "<<x2<<" "<<#x3<<" = "<<x3<<endl
#define max3(a,b,c) max(a,max(b,c))
#define min3(a,b,c) min(a,min(b,c))
#
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值