应用回归分析
第一章 回归模型分析
1.1 回归模型的主要内容及其一般模型
1.2 建立实际问题回归模型的过程
1.3 课程主要内容
1.4 机器学习主要流程
(一)定义问题
- ➢判断是否有人脸(目标检测,分类问题)
- ➢判断性别(分类,输出变量离散)
- ➢判断年龄(回归,输出变量连续)
(二)收集数据
- ➢大量的照片数据
- ➢标注信息
- ➢是否是人脸
- ➢性别
- ➢年龄
(三)特征设计
-
特征
: 给定数据集的特性- ➢统计理解: 指标、概括性的统计量等
- ➢数学理解: 变量及其数学变换等
-
例如
- ➢目标检测: 图像中的各种轮廓和边缘信息
- ➢判断性别和年龄: 脸型、发型、眼镜大小、鼻子形状
- ➢文字处理: 单词、符号、词频、长度
(四)训练模型
- ➢对象: 在训练集上进行
- ➢任务: 通常是调整拟合模型的参数
- ➢目标: 拟合的总体偏差最小
- ➢通常需定义各种损失函数
- ➢技术:
- ➢传统: 基于数理统计,各种统计量
- ➢现代: 基于数值计算和优化技术
(五)测试模型
- ➢对象: 在测试集上进行
- ➢实现: 交叉验证、自助法等