Kafka Topic 的大小

获取 Kafka Topic 的大小方法

  1. 通过 Kafka 自带工具 (kafka-log-dirs.sh)
    运行以下命令,列出 broker 上存储的所有 topic 的日志大小:
    /opt/kafka/bin/kafka-log-dirs.sh --bootstrap-server <BROKER> --describe --topic-list <TOPIC_NAME>
    
    输出示例:
    Broker 0:
    Topic: my-topic Partition: 0 Size: 10485760
    
    这里的 Size 是以字节为单位的。

在这里插入图片描述

在这里插入图片描述

  1. 通过 JMX 监控
    启用 Kafka 的 JMX Exporter,查看指标 kafka.log:type=Log,name=Size,topic=<TOPIC_NAME>,partition=<PARTITION>,可以得到特定 partition 的大小。

  2. 通过 Prometheus(结合 JMX Exporter)

    • JMX Exporter 配置
      JMX Exporter 会暴露类似以下指标:
      kafka_log_size{topic="my-topic",partition="0",...} 10485760
      
    • 使用 Prometheus 查询:
      sum(kafka_log_size{topic="my-topic"})
      
      这会返回指定 topic 的总大小(所有分区的大小之和)。

在这里插入图片描述

  1. 直接检查 Kafka 数据目录
    如果您有 Kafka broker 服务器的访问权限,可以直接查看日志存储路径:
    du -sh /path/to/kafka/logs/<TOPIC_NAME>/
    

Prometheus Kafka 监控的常用指标

  1. Topic 和 Partition 相关指标

    • kafka_log_size: 每个分区的大小。
    • kafka_topic_partition_underreplicated_partition: 未同步副本分区数量。
    • kafka_topic_partition_replicas: 每个分区的副本数量。
  2. Consumer 消费相关

    • kafka_consumer_lag: 消费延迟(即生产者和消费者之间未消费的消息差距)。
  3. 生产者性能

    • kafka_producer_incoming_byte_rate: 生产者的输入速率(字节/秒)。
    • kafka_producer_outgoing_byte_rate: 生产者的输出速率(字节/秒)。
  4. 系统资源

    • kafka_server_request_queue_size: 请求队列大小。
    • kafka_network_request_rate: 网络请求速率。

示例 Prometheus 查询语句:
  • 获取某个 topic 的分区总大小:

    sum(kafka_log_size{topic="my-topic"})
    
  • 获取所有 topic 的分区大小排名:

    topk(5, sum(kafka_log_size) by (topic))
    
  • 获取未消费消息的总数:

    sum(kafka_consumer_lag)
    

通过以上方法,您可以方便地获取 topic 大小和关键的监控数据指标。

### 回答1: 你想了解关于 Kafka Topic 的问题吗?Kafka TopicKafka 中的一个概念,它是消息发布和订阅的主题,可以理解为消息的分类或者标签。在 Kafka 中,生产者将消息发送到指定的 Topic 中,消费者则订阅相应的 Topic,从而接收到该 Topic 中的消息。每个 Topic 可以有多个分区,每个分区可以分布在不同的机器上,这样可以实现消息的分布式存储和处理。 ### 回答2: Kafka Topic(卡夫卡主题)是Apache Kafka中的一个重要概念。Kafka是一个分布式流式处理平台,而Topic则是用于存储消息的逻辑容器。 一个Topic可以看作是一个具有相同名称的消息流的逻辑分组。它可以被认为是一个队列或一个主题订阅者可以从中读取数据。一个Topic可以被多个消费者订阅,每个消费者可以独立地读取和处理消息。同时,一个生产者也可以发送消息到一个或多个Topic中。 每个Topic都被分为多个分区,这些分区可以在不同的机器上进行分布式存储。分区的目的是提高并行处理和消费者的扩展性。在每个分区中,消息按照顺序进行追加,并且每个消息都会被分配一个唯一的偏移量(Offset)。 Topic中的消息不会被立即删除,而是根据配置的保留策略来保留一段时间。保留策略可以是根据时间、根据消息大小或根据任意规则进行设置。 KafkaTopic是一个非常灵活和强大的功能,它能够以高吞吐量、低延迟的方式处理大量数据,并且可以保证数据的可靠性。通过分区和复制机制,Kafka能够实现高可用性和容错性。同时,通过Topic的分组和分区,Kafka还能够提供更高的并行度和伸缩性。 总之,Kafka TopicKafka中用于存储消息的逻辑容器,通过分区和分组的方式,实现了高吞吐量、低延迟、高可靠性和高可扩展性的特性。它在实时流处理和消息传递等场景下被广泛应用。 ### 回答3: Kafka是一个分布式流处理平台,而topicKafka中的一个概念,用于组织和分类不同类型的消息。一个topic可以理解为消息的容器,用来收集和保存相同类型的消息。 在Kafka中,一个topic可以被分为多个分区(partition),每个分区都是一个有序、不可变的消息序列。每条消息都会被追加到特定分区中,而且每个分区中的消息都有一个唯一的偏移量(offset)来标识。因此,可以通过指定偏移量来读取和处理特定分区中的消息。 对于一个topic,可以有多个消费者(consumer)来订阅并消费其中的消息。每个消费者都可以独立地从一个或多个分区消费消息,并且消费的进度(即已读取和处理的偏移量)是由消费者自身维护的。 一个topic可以动态地扩展和缩减分区的数量,以适应不同的数据流量和处理需求。扩展分区可以增加并行度,提高消息的处理速度和吞吐量,而缩减分区可以减少资源占用和成本。 此外,Kafka还支持副本(replica)机制来提供高可用性和容错性。每个分区可以有多个副本,其中一个副本作为leader负责处理读写请求,其他副本作为follower用于备份数据,并在leader失效时接管其职责。 总之,一个Kafka topic是一个用于组织和分类消息的容器,分为多个分区,并支持多个消费者并行地订阅和消费其中的消息。它可以动态扩展和缩减分区数量,以适应不同的需求,同时还支持副本机制来提供高可用性和容错性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值