DQN 算法及 Actor-Critic 算法
1 关键概念
-
DQN(Deep Q-Network): 基于深度学习的Q-learning算法,其结合了 Value Function Approximation(价值函数近似)与神经网络技术,并采用了目标网络(Target Network)和经历回放(Experience Replay)的方法进行网络的训练。
-
State-value Function: 本质是一种critic。其输入为actor某一时刻的state,对应的输出为一个标量,即当actor在对应的state时,预期的到过程结束时间段中获得的value的数值。
-
State-value Function Bellman Equation: 基于state-value function的Bellman Equation,它表示在状态 s_t 下带来的累积奖励 G_t 的期望。
-
Q-function: 其也被称为state-action value function。其input 是一个 state 跟 action 的 pair,即在某一个 state 采取某一个action,假设我们都使用 actor pi,得到的 accumulated reward 的期望值有多大。
-
Target Network: 为了解决在基于TD的Network的问题时,优化目标
左右两侧会同时变化使得训练过程不稳定,从而增大regression的难度。target network选择将上式的右部分即
深度强化学习:DQN与Actor-Critic算法解析

本文详细介绍了DQN算法的关键概念,包括深度Q学习、目标网络、经验回放以及Double和Dueling DQN的改进。同时,文章探讨了Actor-Critic方法,如A2C和A3C,以及Pathwise Derivative Policy Gradient在连续动作空间中的应用。
最低0.47元/天 解锁文章
1253

被折叠的 条评论
为什么被折叠?



