徐亦达 概率模型学习 : gmm

本文探讨了概率模型中的单高斯分布最大似然估计(MLE)和最大后验估计(MAP),并重点讲解了混合高斯分布的MLE。在混合高斯分布的求解中,由于计算复杂性,通常使用EM(期望最大化)算法进行迭代求解。EM算法通过初始化参数,然后不断迭代优化,以找到最佳的中心点(均值u)和形状(协方差矩阵Σ)。文章还提到了EM算法的收敛性质及其在手写数字数据集上的应用示例。
摘要由CSDN通过智能技术生成

单高斯分布 MLE
在这里插入图片描述
posterior 正比例于 likelihood * prior
p ( θ ∣ x ) ∝ p ( x ∣ θ ) ∗ p ( θ ) p(\theta | x) \propto p(x|\theta) * p(\theta) p(θx)p(xθ)p(θ)
参数 θ 的后验分布 ∝ 参数 θ 表示的 x 分布上已知样本有多大概率 ∗ 参数 θ 的先验分布 参数\theta的后验分布 \propto 参数\theta表示的x分布上已知样本有多大概率 * 参数\theta的先验分布 参数θ的后验分布参数θ表示的x分布上已知样本有多大概率参数θ的先验分布
参数的后验 ∝ 样本的 l i k e l i h o o d ∗ 参数的先验 参数的后验 \propto 样本的likelihood * 参数的先验 参数的后验样本的likelihood参数的先验
MLE : max log_likelihood estimator
MAP: max a posterior

混合高斯分布(多个高斯分布混合在一起) MLE
在这里插入图片描述

单高斯混合分布, 只需要令: ∂ L ∂ u = 0 \frac{\partial{L}}{\partial{u}}=0 uL=0 ∂ L ∂ Σ = 0 \frac{\partial{L}}{\partial{\Sigma}}=0 ΣL=0 ; 即可一步到位的精确的求出 u 和 Σ u和\Sigma uΣ的值

混合高斯分布,由于L中有log(多个式子求和), 而log(多个式子求和)求出导数是可以的, 但 要解 ∂ L ∂ u = 0 \frac{\partial{L}}{\partial{u}}=0

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ziix

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值