//2-6简单otsu的背景差分法,这是摄像头实现的效果最好的
/*
最大类间方差法(otsu)的原理:
阈值将原图象分成前景,背景两个图象。
前景:用n1,csum, m1来表示在当前阈值下的前景的点数,质量矩,平均灰度
后景:用n2, sum-csum, m2来表示在当前阈值下的背景的点数,质量矩,平均灰度
当取最佳阈值时,背景应该与前景差别最大,关键在于如何选择衡量差别的标准
而在otsu算法中这个衡量差别的标准就是最大类间方差(英文简称otsu,这也就是这个算法名字的来源)
在本程序中类间方差用sb表示,最大类间方差用fmax
关于最大类间方差法(otsu)的性能:
类间方差法对噪音和目标大小十分敏感,它仅对类间方差为单峰的图像产生较好的分割效果。
当目标与背景的大小比例悬殊时,类间方差准则函数可能呈现双峰或多峰,此时效果不好,但是类间方差法是用时最少的。
最大最大类间方差法(otsu)的公式推导:
记t为前景与背景的分割阈值,前景点数占图像比例为w0, 平均灰度为u0;背景点数占图像比例为w1,平均灰度为u1。
则图像的总平均灰度为:u=w0*u0+w1*u1。
前景和背景图象的方差:g=w0*(u0-u)*(u0-u)+w1*(u1-u)*(u1-u)=w0*w1*(u0-u1)*(u0-u1),此公式为方差公式,可参照概率论课本
上面的g的公式也就是下面程序中的sb的表达式
当方差g最大时,可以认为此时前景和背景差异最大,也就是此时的灰度是最佳阈值.
*/
#include "stdafx.h"
#include
#include "cv.h"
#include "highgui.h"
using namespace std;
using namespace cv;
int cvOtsu2D(CvMat *pGrayMat)
{
double dHistogram[256][256]; //建立二维灰度直方图
double dTrMatrix = 0.0; //离散矩阵的迹
int height = pGrayMat->rows;
int width = pGrayMat->cols;
int N = height*width; //总像素数
int i, j;
for(i = 0; i < 256; i++)
{
for(j = 0; j < 256; j++)
dHistogram[i][j] = 0.0; //初始化变量
}
for(i = 0; i < height; i++)
{
for(j = 0; j < width; j++)
{
unsigned char nData1 = (unsigned char)cvGetReal2D(pGrayMat, i, j);//当前的灰度值
unsigned char nData2 = 0;
int nData3 = 0;//注意9个值相加可能超过一个字节
for(int m = i-1; m <= i+1; m++)
{
for(int n = j-1; n <= j+1; n++)
{
if((m >= 0) && (m < height) && (n >= 0) && (n < width))
nData3 += (unsigned char)cvGetReal2D(pGrayMat, m, n); //当前的灰度值
}
}
nData2 = (unsigned char)(nData3 / 9); //对于越界的索引值进行补零,邻域均值
dHistogram[nData1][nData2]++;
}
}
for(i = 0; i < 256; i++)
for(j = 0; j < 256; j++)
dHistogram[i][j] /= N; //得到归一化的概率分布
double Pai = 0.0; //目标区均值矢量i分量
double Paj = 0.0; //目标区均值矢量j分量
double Pbi = 0.0; //背景区均值矢量i分量
double Pbj = 0.0; //背景区均值矢量j分量
double Pti = 0.0; //全局均值矢量i分量
double Ptj = 0.0; //全局均值矢量j分量
double W0 = 0.0; //目标区的联合概率密度
double W1 = 0.0; //背景区的联合概率密度
double dData1 = 0.0;
double dData2 = 0.0;
double dData3 = 0.0;
double dData4 = 0.0; //中间变量
int nThreshold_s = 0;
int nThreshold_t = 0;
double temp = 0.0; //寻求最大值
for(i = 0; i < 256; i++)
{
for(j = 0; j < 256; j++)
{
Pti += i*dHistogram[i][j];
Ptj += j*dHistogram[i][j];
}
}
for(i = 0; i < 256; i++)
{
for(j = 0; j < 256; j++)
{
W0 += dHistogram[i][j];
dData1 += i*dHistogram[i][j];
dData2 += j*dHistogram[i][j];
W1 = 1-W0;
dData3 = Pti-dData1;
dData4 = Ptj-dData2;
Pai = dData1 / W0;
Paj = dData2 / W0;
Pbi = dData3 / W1;
Pbj = dData4 / W1; // 得到两个均值向量,用4个分量表示
dTrMatrix = ((W0 * Pti - dData1) * (W0 * Pti - dData1) + (W0 * Ptj - dData2) * (W0 * Ptj- dData2)) / (W0 * W1);
if(dTrMatrix > temp)
{
temp = dTrMatrix;
nThreshold_s = i;
nThreshold_t = j;
}
}
}
int nThreshold = (nThreshold_s + nThreshold_t) / 2;//返回阈值,有多种形式,可以单独某一个,也可 //是两者的均值
return nThreshold;
}
int main( int argc, char** argv )
{
IplImage* pFrame = NULL;
IplImage* pFrImg = NULL;
IplImage* pBkImg = NULL;
CvMat* pFrameMat = NULL;
CvMat* pFrMat = NULL;
CvMat* pBkMat = NULL;
CvCapture* pCapture = NULL;
int nFrmNum = 0;
//创建窗口
cvNamedWindow("video", 1);
cvNamedWindow("background",1);
cvNamedWindow("foreground",1);
//使窗口有序排列
cvMoveWindow("video", 30, 0);
cvMoveWindow("background", 360, 0);
cvMoveWindow("foreground", 690, 0);
pCapture = cvCaptureFromCAM(0);
// pCapture=cvCaptureFromAVI("2.avi");
//逐帧读取视频
while(pFrame = cvQueryFrame( pCapture ))
{
nFrmNum++;
//如果是第一帧,需要申请内存,并初始化
if(nFrmNum == 1)
{
pBkImg = cvCreateImage(cvSize(pFrame->width, pFrame->height),
IPL_DEPTH_8U,1);
pFrImg = cvCreateImage(cvSize(pFrame->width, pFrame->height),
IPL_DEPTH_8U,1);
pBkMat = cvCreateMat(pFrame->height, pFrame->width, CV_32FC1);
pFrMat = cvCreateMat(pFrame->height, pFrame->width, CV_32FC1);
pFrameMat = cvCreateMat(pFrame->height, pFrame->width, CV_32FC1);
//转化成单通道图像再处理
cvCvtColor(pFrame, pBkImg, CV_BGR2GRAY);
cvCvtColor(pFrame, pFrImg, CV_BGR2GRAY);
cvConvert(pFrImg, pFrameMat);
cvConvert(pFrImg, pFrMat);
cvConvert(pFrImg, pBkMat);
}
else
{
cvCvtColor(pFrame, pFrImg, CV_BGR2GRAY);
cvConvert(pFrImg, pFrameMat);
//先做高斯滤波,以平滑图像
//cvSmooth(pFrameMat, pFrameMat, CV_GAUSSIAN, 3, 0, 0);
//当前帧跟背景图相减
cvAbsDiff(pFrameMat, pBkMat, pFrMat);
//二值化前景图,cvOtsu2D(pFrMat)
cvThreshold(pFrMat, pFrImg, cvOtsu2D(pFrMat), 255.0, CV_THRESH_BINARY);
//更新背景
cvRunningAvg(pFrameMat, pBkMat, 1, 0);//值设为1对于摄像头来说是效果最好的,但播放视频的时候低一点比较好
//将背景转化为图像格式,用以显示
cvConvert(pBkMat, pBkImg);
cvShowImage("video", pFrame);
cvShowImage("background", pBkImg);
cvShowImage("foreground", pFrImg);
//如果有按键事件,则跳出循环
//此等待也为cvShowImage函数提供时间完成显示
//等待时间可以根据CPU速度调整
if( cvWaitKey(2) >= 0 )
break;
} // end of if-else
} // end of while-loop
//销毁窗口
cvDestroyWindow("video");
cvDestroyWindow("background");
cvDestroyWindow("foreground");
//释放图像和矩阵
cvReleaseImage(&pFrImg);
cvReleaseImage(&pBkImg);
cvReleaseMat(&pFrameMat);
cvReleaseMat(&pFrMat);
cvReleaseMat(&pBkMat);
cvReleaseCapture(&pCapture);
return 0;
}
2-6简单otsu的背景差分法
最新推荐文章于 2024-09-12 06:46:34 发布