torch 单机多卡运行

本文详细介绍了如何在PyTorch中进行单机多GPU训练,包括环境设置、模型分配、损失函数迁移及数据加载。针对未有效使用多卡和CUDA非法内存访问错误,提供了排查建议,强调了debug时检查所有变量与模型是否均移到GPU的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

### 单机训练命令 在单机环境下使用个 GPU 进行程序运行时,无论是 PyTorch 还是 TensorFlow 都提供了相应的支持。以下是针对这两种框架的具体实现方式。 #### PyTorch单机训练 对于 PyTorch 来说,可以利用 `torch.nn.DataParallel` 或者更推荐的方式——基于 `torch.distributed.launch` 和 `torch.multiprocessing.spawn` 实现分布式训练[^4]。下面是一个典型的启动命令: ```bash CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.run --nproc_per_node=4 train_script.py --arg1 value1 --arg2 value2 ``` - **解释**: - `CUDA_VISIBLE_DEVICES`: 设置可见的 GPU 设备号。 - `-m torch.distributed.run`: 调用 PyTorch 提供的分布式运行模块。 - `--nproc_per_node=4`: 表示每台机器上启动 4 个进程(即使用 4 块 GPU)。 - `train_script.py`: 训练脚本文件名。 如果需要手动控制每个进程的行为,则可以在代码中设置环境变量并调用 `init_process_group()` 函数初始化分布式环境。 #### TensorFlow 的单机训练 TensorFlow 支持通过 Keras API 或原生 Estimator 接口完成单机训练。通常情况下,可以通过指定策略来管理模型分布。例如,使用 MirroredStrategy 可以轻松实现同步更新权重的目标。 ```python strategy = tf.distribute.MirroredStrategy() with strategy.scope(): model = create_model() # 创建模型函数 model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) model.fit(train_dataset, epochs=EPOCHS) ``` 当采用命令行形式启动 TensorFlow 程序时,可以直接定义 CUDA_VISIBLE_DEVICES 参数限制使用的显数量: ```bash CUDA_VISIBLE_DEVICES=0,1,2,3 python train_tf.py --arg1 value1 --arg2 value2 ``` 需要注意的是,在某些复杂场景下可能还需要额外配置诸如 NCCL 库版本等问题[^1]。 另外值得注意的一点是在非分布式环境中尝试调用部分特定功能如 barrier 方法可能会引发阻塞现象[^3],因此务必确认所处上下文是否适配这些操作逻辑。 ### 总结 综上所述,无论选用哪种深度学习框架来进行单机训练都需要合理规划资源分配情况,并依据具体需求调整相应参数设定。同时也要留意不同硬件平台间可能存在兼容性差异从而影响最终效果表现。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值