人工智能数学基础知识复习(二)——特征分解与奇异值分解(SVD)

今天我们复习一下线性代数中的矩阵特征分解与奇异值分解。本文将结合几何的角度来阐述这两个概念。一、特征值与特征分解假设我们现在有一个对角矩阵为:将该矩阵作用于列向量,则可以得到:从几何的角度,上式可以看做在平面上取一个点(x, y)并使用矩阵乘法将其变换为另外一个点。我们可以用下图表示上述变换:由图中可以看出矩阵M使该平面在横轴方向变大了3倍,纵轴方向保持不变。如...
摘要由CSDN通过智能技术生成

今天我们复习一下线性代数中的矩阵特征分解与奇异值分解。本文将结合几何的角度来阐述这两个概念。

一、特征值与特征分解

假设我们现在有一个对角矩阵为:

M = \begin{bmatrix} 3 & 0\\ 0 & 1 \end{bmatrix}

将该矩阵作用于列向量[x, y]^{^{T}},则可以得到:

\begin{bmatrix} 3 & 0\\ 0 & 1 \end{bmatrix}\begin{bmatrix} x\\ y \end{bmatrix}=\begin{bmatrix} 3x\\ y \end{bmatrix}

从几何的角度,上式可以看做在平面上取一个点(x, y)并使用矩阵乘法将其变换为另外一个点。我们可以用下图表示上述变换:

由图中可以看出矩阵M使该平面在横轴方向变大了3倍,纵轴方向保持不变。

如果矩阵M换作下式是什么情况呢?

M = \begin{bmatrix} 2&1 \\ 1& 2 \end{bmatrix}

变换的效果会像下面这张图一样:

上面的图可能不是很直观,让我们把图片中的网格向左旋转45度观察:

现在,我们能够很明显地看到,M矩阵将向量在一个方向上拉伸了3倍,在另外一个方向上保持不变。在2*2对称矩阵作用下的结果,我们一般都需要通过旋转网格来观察。这样的矩阵一般会使原向量在其两个方向上产生拉伸或者反射,也就是说它对向量的作用和对角矩阵类似。

现在,我们来具体地看特征值和特征向量。

假设我们有一个对称矩阵M,那么我们可以找到一组正交向量v_{i}使得

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值