在当今人工智能迅猛发展的时代,借助AI生成图像已成为应用开发中的一大趋势。Google推出的Imagen技术,通过Vertex AI平台,为开发者提供了强大的图像生成和编辑能力。本文将详细介绍如何在Vertex AI上使用Imagen完成文本到图像生成、图像编辑、图像描述和视觉问答等任务,并通过完整的示例代码提供实用指导。
技术背景介绍
Google Imagen通过自然语言处理和计算机视觉技术,能够根据文本提示生成高质量的图像。结合Vertex AI平台,开发者可以快速构建下一代的AI产品,将用户的想象力转换为视觉资产。
核心原理解析
Imagen使用了先进的生成式对抗网络(GAN)和变分自编码器(VAE)等深度学习架构,通过分析文本信息生成与之相关的图像。这一过程结合了语言理解和视觉生成技术。
代码实现演示
1. 图像生成
使用文本生成新颖的图像。
from langchain_core.messages import AIMessage, HumanMessage
from langchain_google_vertexai.vision_models import VertexAIImageGeneratorChat
import base64
import io
from PIL import Image
# 创建图像生成模型对象
generator = VertexAIImageGeneratorChat()
# 提供文本输入以生成图像
messages = [HumanMessage(content=["a cat at the beach"])]
response = generator.invoke(messages)
# 获取生成的图像
generated_image = response.content[0]
# 解析响应对象以获取图像的base64字符串
img_base64 = generated_image["image_url"]["url"].split(",")[-1]
# 将base64字符串转换为图像
img = Image.open(io.BytesIO(base64.decodebytes(bytes(img_base64, "utf-8"))))
# 显示图像
img.show()
2. 图像编辑
使用文本提示编辑现有图像。
from langchain_google_vertexai.vision_models import (
VertexAIImageEditorChat,
VertexAIImageGeneratorChat,
)
# 创建图像生成模型对象
generator = VertexAIImageGeneratorChat()
# 提供文本输入以生成图像
messages = [HumanMessage(content=["a cat at the beach"])]
response = generator.invoke(messages)
generated_image = response.content[0]
# 创建图像编辑模型对象
editor = VertexAIImageEditorChat()
# 书写编辑提示并传递“生成的图像”
messages = [HumanMessage(content=[generated_image, "a dog at the beach "])]
# 调用模型进行图像编辑
editor_response = editor.invoke(messages)
# 解析响应对象以获取编辑后的图像base64字符串
edited_img_base64 = editor_response.content[0]["image_url"]["url"].split(",")[-1]
# 将base64字符串转换为图像
edited_img = Image.open(io.BytesIO(base64.decodebytes(bytes(edited_img_base64, "utf-8"))))
# 显示编辑后的图像
edited_img.show()
3. 图像描述
获取图像的文字描述。
from langchain_google_vertexai import VertexAIImageCaptioning
# 初始化图像描述对象
model = VertexAIImageCaptioning()
# 使用在图像生成部分生成的图像
img_base64 = generated_image["image_url"]["url"]
response = model.invoke(img_base64)
# 打印生成的描述
print(f"Generated Caption: {response}")
# 将base64字符串转换为图像
img = Image.open(io.BytesIO(base64.decodebytes(bytes(img_base64.split(",")[-1], "utf-8"))))
# 显示图像
img.show()
4. 视觉问答
基于图像进行问答。
from langchain_google_vertexai import VertexAIVisualQnAChat
# 初始化视觉问答对象
model = VertexAIVisualQnAChat()
question = "What animal is shown in the image?"
response = model.invoke(
input=[
HumanMessage(
content=[
{"type": "image_url", "image_url": {"url": img_base64}},
question,
]
)
]
)
# 打印问题及答案
print(f"Question: {question}\nAnswer: {response.content}")
# 将base64字符串转换为图像
img = Image.open(io.BytesIO(base64.decodebytes(bytes(img_base64.split(",")[-1], "utf-8"))))
# 显示图像
img.show()
应用场景分析
图像生成技术能够广泛应用于广告创意、数字艺术、媒体设计等领域,为用户提供快速高效的视觉方案创建工具。而图像编辑、描述与问答则为图像理解与交互提供了更多可能性,适用于智能助手、教育软件等场景。
实践建议
- 文本提示设计:在设计文本提示时,尽量使用具体及描述性的语言,以获得更精准的生成结果。
- API调用频率:合理规划API调用的频率与时长,确保服务的稳定性。
- 图像存储与展示:使用适当的工具与格式存储生成的图像,优化加载速度和用户体验。
如果遇到问题欢迎在评论区交流。
—END—