使用PGVector进行电影文档的向量搜索

在本文中,我们将演示如何使用Postgres数据库中的PGVector包来进行向量相似性搜索。具体而言,我们会展示如何使用PGVector创建一个向量存储,并结合自查询检索器(SelfQueryRetriever)来对电影文档集合进行检索。

技术背景介绍

PGVector是一个针对Postgres数据库的向量相似性搜索插件。它允许我们在数据库中存储向量并进行快速的相似性检索,非常适合于需要进行语义搜索的场景,例如搜索电影的相似性。

核心原理解析

PGVector通过将文档进行向量化后存储在Postgres数据库中,然后利用向量的余弦相似性或其他相似性度量进行快速检索。结合OpenAI的嵌入服务(OpenAIEmbeddings),我们可以对文本数据进行向量化,从而实现复杂的语义搜索。

代码实现演示

以下是使用PGVector创建电影文档向量存储及自查询检索器的完整代码实现:

# 安装必要的库
%pip install --upgrade --quiet lark pgvector psycopg2-binary

# 导入相关库
import os
import getpass
from langchain_community.vectorstores import PGVector
from langchain_core.documents import Document
from langchain_openai import OpenAIEmbeddings
from langchain.chains.query_constructor.base import AttributeInfo
from langchain.retrievers.self_query.base import SelfQueryRetriever
from langchain_openai import OpenAI

# 设置OpenAI API Key
os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")

# 创建PGVector向量存储
collection = "movie_collection"
embeddings = OpenAIEmbeddings()

# 创建电影文档集合
docs 
<think>好的,用户想查找关于pgvector文档使用说明,特别是官方教程。首先,我需要整理现有的引用资料,看看能提供哪些信息。 根据用户提供的引用内容,有四个不同的pgvector客户端库的教程链接,分别对应Go、.NET、Python以及Docker Compose安装pgvector的方法。每个引用都包含了项目地址和简要说明。比如引用[1]是Go语言pgvector支持,引用[2]涉及Docker安装和基本操作,引用[3]是.NET的,引用[4]是Python的。用户可能需要这些客户端库的具体使用文档,以及官方资源。 接下来,用户可能需要知道如何访问官方文档,比如GitHub上的pgvector项目。虽然引用中没有直接给出主项目的URL,但根据各个客户端的镜像地址,可以推测主项目可能在pg/pgvector,因此需要建议用户访问GitHub上的官方仓库。 另外,用户可能需要安装指南、API使用示例和操作步骤。引用[2]提到了使用Docker Compose安装pgvector,这可以作为安装方法的一部分。同时,各个客户端的项目地址提供了更具体的语言支持,用户可能需要根据自己使用的编程语言选择对应的客户端库。 还需要考虑用户可能遇到的问题,比如如何创建扩展、存储向量、进行相似性搜索等。引用[2]中的SQL语句示例(SELECT * FROM pg_extension;)可能相关,但需要更详细的说明。这时候应该建议用户查阅官方文档中的详细操作步骤。 此外,是否需要提供问题示例?根据用户之前的示例,生成相关问题是有必要的。比如如何安装、客户端库使用、性能优化、应用场景等。 最后,要确保回答结构清晰,分点列出官方资源和各语言教程,并附上相关引用。同时,生成的帮助问题需要覆盖用户可能关心的其他方面,比如安装、集成、性能比较等。</think>关于pgvector文档使用说明,以下是整理后的官方资源及教程指南: ### 一、官方核心文档 1. **pgvector GitHub仓库** - 主项目地址:https://github.com/pgvector/pgvector - 包含完整的安装指南、API说明、向量操作示例(如相似性搜索、索引优化)[^2]。 2. **扩展功能启用** 安装后需在PostgreSQL中执行: ```sql CREATE EXTENSION pgvector; ``` 验证安装:`SELECT * FROM pg_extension;` ### 二、多语言客户端教程 1. **Go语言** - 项目地址:https://gitcode.com/gh_mirrors/pg/pgvector-go - 支持向量类型与Go数据结构的映射,提供CRUD操作示例[^1]。 2. **.NET(C#/F#/VB)** - 项目地址:https://gitcode.com/gh_mirrors/pg/pgvector-dotnet - 含目录结构说明及数据库连接配置[^3]。 3. **Python** - 项目地址:https://gitcode.com/gh_mirrors/pg/pgvector-python - 覆盖环境配置、向量存储和检索示例[^4]。 ### 三、快速入门步骤 1. **Docker部署** 使用Docker Compose快速搭建含pgvector的PostgreSQL环境。 2. **向量搜索示例** ```sql CREATE TABLE items (id bigserial PRIMARY KEY, embedding vector(3)); INSERT INTO items (embedding) VALUES ('[1,2,3]'); SELECT * FROM items ORDER BY embedding <-> '[3,1,2]' LIMIT 5; ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值