使用 Llama.cpp 和 llama-cpp-python 快速部署本地 LLM 模型

在这篇技术文章中,我们将探讨如何使用 llama-cpp-pythonllama.cpp 的 Python 绑定)在本地运行大语言模型(LLMs)。你将学到如何安装依赖、加载模型、调整参数以获得最佳性能,以及如何结合 LangChain 处理推理任务。


一、技术背景介绍

llama-cpp-pythonllama.cpp 的 Python 绑定,旨在简化本地运行大语言模型的过程。它支持多种 LLM 模型,包括可以从 Hugging Face 获取的模型。

新版本提示

最新版本的 llama-cpp-python 已改用 GGUF 模型文件格式并不再兼容旧版 GGML 文件格式。如果你需要转换模型文件,可使用以下命令:

python ./convert-llama-ggmlv3-to-gguf.py --eps 1e-5 \
--input models/openorca-platypus2-13b.ggmlv3.q4_0.bin \
--output models/openorca-platypus2-13b.gguf.q4_0.bin

二、安装 llama-cpp-python

1. CPU 安装

最简单的安装方式:

pip install --upgrade --quiet llama-cpp-python

2. 使用 OpenBLAS/cuBLAS/CLBlast 加速

要启用更高性能的 BLAS 后端,可设置环境变量 FORCE_CMAKE=1 并使用以下命令:

CMAKE_ARGS="-DLLAMA_CUBLAS=on" FORCE_CMAKE=1 \
pip install llama-cpp-python --upgrade --force-reinstall --no-cache-dir

3. Metal (适用于 Apple Silicon)

Mac 用户可以通过 Metal GPU 获得性能优化:

CMAKE_ARGS=
### 解决基于 llama.cpp 本地部署 DeepSeek-R1 模型时缺少上传附件功能的问题 为了使 Windows 7 用户能够成功部署并利用 DeepSeek-R1 模型,教程已经针对该环境进行了特定调整[^1]。然而,在实际应用过程中遇到了缺乏文件上传能力这一挑战。 #### 文件上传机制分析 通常情况下,Llama.cpp 并不自带图形界面或直接支持文件上传的功能。这是因为 Llama.cpp 主要专注于提供推理服务而非构建完整的应用程序框架。因此,当需要实现文件上传特性时,则需额外集成其他组件来补充此功能。 对于希望增加文件上传特性的用户来说,可以考虑采用以下几种方法: - **通过 Web 接口间接处理** 构建一个简单的 HTTP/HTTPS 服务器作为前端接口,允许用户提交文件到指定位置。Python 的 Flask 或 FastAPI 是两个轻量级的选择,易于配置且能快速搭建起所需的服务端逻辑。 ```python import os from flask import Flask, request, send_from_directory app = Flask(__name__) UPLOAD_FOLDER = './uploads' if not os.path.exists(UPLOAD_FOLDER): os.makedirs(UPLOAD_FOLDER) @app.route('/upload', methods=['POST']) def upload_file(): if 'file' not in request.files: return "No file part", 400 file = request.files['file'] if file.filename == '': return "No selected file", 400 filename = secure_filename(file.filename) filepath = os.path.join(app.config['UPLOAD_FOLDER'], filename) file.save(filepath) # 这里可以根据需求调用 llm 处理函数 process_llm_with_uploaded_file(filepath) return f"File {filename} has been uploaded successfully.", 200 def process_llm_with_uploaded_file(path_to_file): pass # 实现具体的LLM处理流程 if __name__ == "__main__": app.run(debug=True) ``` - **命令行参数传递** 如果应用场景较为简单,也可以简化设计思路——即让用户先手动将待处理的数据放置于预设目录下,再启动 Llama.cpp 应用程序并通过命令行参数告知其输入路径。这种方式虽然不够直观友好,但对于某些场景可能是最简便有效的解决方案之一。 - **第三方库辅助开发** 利用 Python 中诸如 `streamlit` 等可视化工具包创建交互式的 GUI 页面,不仅可以让整个过程更加人性化,同时也更容易满足不同层次用户的操作习惯。Streamlit 提供了便捷的方式用于展示模型预测结果以及接收来自用户的反馈信息。 综上所述,尽管原生的 Llama.cpp 不具备内置的文件管理能力,但借助外部技术开源项目完全可以克服这个障碍,并为用户提供满意的体验。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值