修改图片名称并编号;批量处理及缩小图片内存大小(超实用的批处理图片功能)

场景:生活或者工作中,经常遇到需要批量处理图片或者修改名称的场景。

接下来教大家一个快速的操作:

1、PC版美图秀秀中有个【批处理】

2、选择文件夹中图片,进行处理

说明:功能很齐全,基本涵盖日常生活中需要批量处理的需求,很方便

需要重命名,在图中【重命名】处,输入前缀及其实序号,点击【保存】即可

3、处理后效果(画质为90%,自动把图片处理到占内存最小,这个功能很实用)

 

结尾心得:可能Photoshop应该也有此功能,但是一直感觉PS太过于专业、软件也比较厚重,所以对于业余的选手【美图秀秀】使用起来也足够了。

over

### YOLOv8 训练代码中的配置文件 YAML 格式 在YOLOv8训练过程中,配置文件通常采用YAML格式来存储各种参数和设置。这些配置文件不仅简化了实验的管理和重复执行,还允许用户通过简单的文本编辑调整复杂的模型行为。 #### 配置文件结构概述 典型的YOLOv8配置文件会包含以下几个主要部分: - **数据集路径**:指定用于训练的数据集位置以及验证集的位置。 - **模型架构**:定义所使用的具体网络结构及其组件细节。 - **优化器选项**:设定学习率、动量等影响梯度下降过程的关键因素。 - **训练策略**:包括批量大小(batch size)、迭代次数(epochs)以及其他高级特性如混合精度训练的支持[^1]。 #### 示例配置文件 (`train.yaml`) 下面是一个简化的YOLOv8训练配置文件示例,展示了如何利用YAML语法表达上述各个方面的信息: ```yaml # 数据集配置 path: ./datasets/coco/ # 数据集根目录 train: images/train2017 # 训练图像子文件夹相对路径 val: images/val2017 # 测试图像子文件夹相对路径 nc: 80 # 类别数量 (COCO有80类) names: ['person', 'bicycle', ... ] # 各类别名称列表 # 模型配置 model: depth_multiple: 0.33 # 深度乘数, 控制骨干网层数比例 width_multiple: 0.50 # 宽度乘数, 影响特征图通道数目 # 训练参数 batch_size: 16 # 批处理尺寸 epochs: 300 # 总轮次 imgsz: 640 # 输入图片分辨率 rect: false # 是否启用矩形推理模式 device: '' # GPU设备编号,默认为空表示自动选择可用GPU workers: 8 # 加载线程数 project: runs/train # 结果保存项目名 name: exp # 实验名字 exist_ok: False # 如果存在同名则覆盖还是继续创建新文件夹 single_cls: True # 单分类或多分类标志位 resume: last.pt # 断点续训权重文件地址 patience: 10 # Early stopping patience epochs number before stop training. sync_bn: true # 使用同步BN层 cos_lr: true # 开启余弦退火学习率调度器 label_smoothing: 0.0 # 标签平滑系数 upload_dataset: False # 将数据上传至W&B平台开关 cache_images: False # 缓存所有训练样本到内存中加速读取速度 image_weights: False # 对不同难度级别的实例赋予不同的损失权重 quad: False # 四倍增强采样 linear_lr: False # 线性缩放LR规则 save_period: -1 # 设置每隔多少epoch保存一次checkpoint(-1代表仅最后保存) seed: 42 # 随机种子值 deterministic: True # 可重现性的随机操作控制 sparsity: 0.0 # 剪枝稀疏化程度 optimizer: Adam # 默认优化算法类型 momentum: 0.937 # 动量因子 weight_decay: 0.0005 # 权重衰减项强度 ema: True # Exponential Moving Average是否开启EMA更新机制 flipud: 0.0 # 上下翻转概率 fliplr: 0.5 # 左右镜像变换几率 mosaic: 1.0 # Mosaic数据增广方式应用频率 degrees: 0.0 # 图片旋转角度范围 translate: 0.1 # 平移偏移百分比幅度 scale: 0.5 # 放大缩小尺度变化区间 shear: 0.0 # 错切变形斜率界限 perspective: 0.0 # 投影变换视角扭曲等级 mixup: 0.0 # MixUp合成方法发生可能性 copy_paste: 0.0 # Copy-Paste粘贴复制技术触发条件 ``` 此配置文件提供了详细的参数描述,且可以根据实际需求轻松修改相应字段以适应特定的任务场景。对于更深入的理解,建议查阅官方文档获取最新最全的信息和支持[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

多来哈米

还可以打赏???来试一毛

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值