显卡的种类?知道吗?

显卡的种类可以从不同角度进行分类,以下是主要的几种分类方式:

一、按制造商与标准分类

  1. 公版显卡

    • 定义:由研发厂家NVIDIA(英伟达)和AMD(超威半导体)两大厂商制造。
    • 特点:整体运行稳定,寿命普遍很高。在设计、电路、接口、用料和散热方面都有统一标准,核心频率也一致。
  2. 非公版显卡

    • 定义:由各大品牌厂家(如华硕、微星、技嘉、蓝宝石等)从公版显卡品牌NVIDIA或AMD采购芯片后,再进行其他设计(如改变显存大小、散热方式、电路设计等)后生产出的显卡。
    • 特点:选择面广,可能出现性价比高的产品,但厂商众多,消费者选择时需谨慎。

二、按集成方式分类

  1. 集成显卡(集显)

    • 定义:内置于CPU里的显卡,没有单独的内存去处理图形和视频。
    • 特点:性能较弱,功耗低,价格实惠,适合日常办公和轻度娱乐。
  2. 核心显卡(核显)

    • 定义:也属于集成显卡的一种,但集成在CPU当中,而不是主板上。
    • 特点:性能较集显好,体积小,功耗低,常用于轻薄笔记本,能在更低功耗下实现出色的图形处理性能和流畅的应用体验。
  3. 独立显卡(独显)

    • 定义:具备单独的显存,不占用系统内存,可扩展性强。
    • 特点:性能强劲,功耗高,价格较高,适合大型游戏、专业剪辑、建模等高性能需求。

三、按品牌与系列分类

  1. NVIDIA显卡(N卡)

    • 代表系列:GTX系列(如GTX 1080 Ti),RTX系列(如RTX 3060 Ti)。其中,RTX系列支持光线追踪技术。
  2. AMD显卡(A卡)

    • 代表系列:如RTX 580等,数字越大性能越好。

四、按性能与用途分类

  1. 入门级显卡

    • 性能较低,适合日常办公、学习等轻度使用。
  2. 主流级显卡

    • 性能适中,能满足大多数消费者的需求,包括游戏、视频播放等。
  3. 高端显卡

    • 性能强劲,适合大型游戏、专业设计、渲染等高性能需求。

五、按技术发展趋势分类

  1. 传统显卡

    • 基于传统的图形处理技术,满足基本的图形处理需求。
  2. 融合人工智能技术显卡

    • 随着人工智能技术的不断发展,显卡在AI领域的运用也越来越广泛,显卡将更加注重与人工智能技术的融合,通过深度学习算法的优化,提升图形处理性能。

综上所述,显卡的种类繁多,消费者在选择时应根据自己的需求和预算进行综合考虑。

内容概要:《2024年中国城市低空经济发展指数报告》由36氪研究院发布,指出低空经济作为新质生产力的代表,已成为中国经济新的增长点。报告从发展环境、资金投入、创新能力、基础支撑和发展成效五个维度构建了综合指数评价体系,评估了全国重点城市的低空经济发展状况。北京和深圳在总指数中名列前茅,分别以91.26和84.53的得分领先,展现出强大的资金投入、创新能力和基础支撑。低空经济主要涉及无人机、eVTOL(电动垂直起降飞行器)和直升机等产品,广泛应用于农业、物流、交通、应急救援等领域。政策支持、市场需求和技术进步共同推动了低空经济的快速发展,预计到2026年市场规模将突破万亿元。 适用人群:对低空经济发展感兴趣的政策制定者、投资者、企业和研究人员。 使用场景及目标:①了解低空经济的定义、分类和发展驱动力;②掌握低空经济的主要应用场景和市场规模预测;③评估各城市在低空经济发展中的表现和潜力;④为政策制定、投资决策和企业发展提供参考依据。 其他说明:报告强调了政策监管、产业生态建设和区域融合错位的重要性,提出了加强法律法规建设、人才储备和基础设施建设等建议。低空经济正加速向网络化、智能化、规模化和集聚化方向发展,各地应找准自身比较优势,实现差异化发展。
<think>好的,用户想了解如何使用OpenPose进行关键点预标注。首先我需要回忆一下OpenPpose的相关知识,并参考提供的资料。 根据引用[3],用户提到需要按照OpenPose的安装步骤进行配置。虽然步骤看起来多,但实际可能不需要全部完成。可能需要先安装依赖项,比如CMake、CUDA、cuDNN等。然后,从GitHub仓库克隆代码,进行编译和安装。这部分可能需要详细说明,但用户可能更关心如何运行预训练模型进行标注。 引用[1]提到可以使用预训练的OpenPose模型,并根据任务进行微调。这里可能涉及加载模型、输入图像、获取关键点输出。同时,引用[2]指出OpenPose利用关键点之间的先验关系,比如人体部位的连接,这可能影响标注结果的结构。 接下来,用户需要具体的步骤:安装环境、下载模型、运行推理、处理输出。要确保步骤清晰,可能包括代码示例,比如Python脚本调用OpenPose库,或者使用命令行工具处理图像或视频。 另外,用户可能想知道如何处理输出数据,比如保存关键点坐标到文件,或者可视化结果。需要注意不同版本OpenPose的输出格式可能不同,可能需要调整代码。 还需要提醒用户常见问题,比如环境配置中的CUDA版本兼容性,模型路径是否正确,输入图像的尺寸要求等。如果用户需要批量处理,可能需要编写脚本自动化流程。 最后,相关问题的生成应该围绕OpenPose的优化、应用场景、与其他模型的对比等,帮助用户进一步学习。</think>### 使用 OpenPose 进行关键点预标注的方法和步骤 #### 1. **环境配置** - **安装依赖项** 需要 CUDA、cuDNN(GPU 加速)、CMake、Python 等基础环境支持。 ```bash # 示例:Ubuntu 系统安装基础依赖 sudo apt-get install build-essential cmake libopencv-dev ``` - **克隆 OpenPose 仓库** ```bash git clone https://github.com/CMU-Perceptual-Computing-Lab/openpose.git cd openpose ``` - **编译安装** 根据官方文档选择是否启用 GPU 支持,编译完成后生成可执行文件[^3]。 #### 2. **模型下载与准备** - 下载预训练的人体关键点检测模型(通常包含在 OpenPose 的 `models` 目录中)。 - 模型文件包括:`pose_iter_440000.caffemodel`(权重文件)和 `pose_deploy.prototxt`(网络结构文件)。 #### 3. **关键点检测与标注** - **命令行直接运行** 对单张图像或视频进行关键点检测: ```bash ./build/examples/openpose/openpose.bin --image_dir /path/to/images --write_json /output/json_dir ``` 参数说明: - `--image_dir`:输入图像目录 - `--write_json`:输出关键点坐标的 JSON 文件路径 - `--display 0`:关闭实时预览以提升速度 - **Python API 调用** 通过 Python 脚本批量处理: ```python from openpose import pyopenpose as op params = { "model_folder": "models/", "net_resolution": "368x368", "write_json": "output_json/" } opWrapper = op.WrapperPython() opWrapper.configure(params) opWrapper.execute() ``` #### 4. **结果解析与可视化** - **JSON 文件格式** 关键点坐标以 `[x, y, confidence]` 形式存储,按人体部位索引排列(如 0:鼻子,1:颈部等)。 - **可视化标注结果** 使用 OpenCV 绘制关键点和骨骼连接: ```python import cv2 image = cv2.imread("input.jpg") for keypoint in keypoints: x, y, conf = keypoint if conf > 0.2: # 过滤低置信度点 cv2.circle(image, (int(x), int(y)), 3, (0,255,0), -1) cv2.imwrite("output.jpg", image) ``` #### 5. **微调与优化(可选)** - 若需适配特定场景(如动物姿态),可通过修改网络结构或调整损失函数进行模型微调[^1]。 - 调整参数如 `net_resolution` 平衡速度与精度。 --- ### 注意事项 1. **硬件要求**:GPU 可显著加速推理过程(推荐 NVIDIA 显卡)。 2. **输入格式**:支持图像(JPG/PNG)、视频、甚至实时摄像头输入。 3. **输出扩展**:JSON 文件可直接用于训练其他模型(如动作识别、姿态分类)。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ProgramHan

你的鼓励是我最大的动力!!!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值