tf.boolean_mask()的详细用法

tf.boolean_mask 的作用是 通过布尔值 过滤元素

def boolean_mask(tensor, mask, name="boolean_mask", axis=None):
  """Apply boolean mask to tensor."""

参数解释:

tensor:被过滤的元素列表或数组

mask:一堆 bool 值,它的维度不一定等于 tensor

return: mask 为 true 对应的 tensor 的元素

当 tensor 与 mask 维度一致时,return 一维

# 1维的示例
tensor = [0, 1, 2, 3]
mask = np.array([True, False, True, False])
out = tf.boolean_mask(tensor, mask)
with tf.Session() as sess:
    print(sess.run(out))   # [0, 2]
    print(out.shape)        # (?,)

再看看 mask 与 tensor 维度不同的例子

tensor = [[1, 2], [3, 4], [5, 6]]
mask = np.array([True, False, True])        # mask 与 tensor 维度不同
out2 = tf.boolean_mask(tensor, mask)
with tf.Session() as sess:
    print(sess.run(out2))       # [[1, 2], [5, 6]]
    print(out2.shape)           # (?, 2)

mask 可以用一个函数代替

# 3-D
tensor = tf.constant([
                [[2,4],[4,1]],
                [[6,8],[2,1]]],tf.float32)
mask = tensor > 2        # 滤波器  mask 与 tensor 相同维度
out3 = tf.boolean_mask(tensor, mask)
with tf.Session() as sess:
   print(sess.run(tensor))
   print(sess.run(mask))       # [[[False  True] [ True False]]
                               # [[ True  True] [False False]]]

   print(sess.run(out3))        # [4. 4. 6. 8.]     输出一维
   print(out3.shape)            # (?,)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值