NOIP2014 飞扬的小鸟 (DP)

15 篇文章 0 订阅

Description

Flappy Bird 是一款风靡一时的休闲手机游戏。玩家需要不断控制点击手机屏幕的频率来调节小鸟的飞行高度,让小鸟顺利通过画面右方的管道缝隙。如果小鸟一不小心撞到了水管或者掉在地上的话,便宣告失败。为了简化问题,我们对游戏规则进行了简化和改编:游戏界面是一个长为n ,高为 m 的二维平面,其中有k 个管道(忽略管道的宽度)。小鸟始终在游戏界面内移动。小鸟从游戏界面最左边任意整数高度位置出发,到达游戏界面最右边时,游戏完成。小鸟每个单位时间沿横坐标方向右移的距离为1 ,竖直移动的距离由玩家控制。如果点击屏幕,小鸟就会上升一定高度X ,每个单位时间可以点击多次,效果叠加;如果不点击屏幕,小鸟就会下降一定高度Y 。小鸟位于横坐标方向不同位置时,上升的高度X 和下降的高度Y 可能互不相同。小鸟高度等于0 或者小鸟碰到管道时,游戏失败。小鸟高度为 m 时,无法再上升。现在,请你判断是否可以完成游戏。如果可以 ,输出最少点击屏幕数;否则,输出小鸟最多可以通过多少个管道缝隙。

Solution

显然DP:
dpi,j 表示到第 i 列第i行的最小点击次数(这里可以滚动一下)
转移方程为:
下降: dpi,j=dpi1,j+Yi+1
上升: dpi,j=min(dpi1,jkXi) (注意:实现时需特判 j=m 时的情况)
发现求上升的时间复杂度时 O(n3) 的,其实很多转移毫无意义,优化即可

Code

//Author: Hany01
//noip2017 Fighting!!!
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#include<vector>
#include<set>
#define For(i , j , k) for (int i = (j) , _##end_ = (k) ; i <= _##end_ ; ++ i)
#define Fordown(i , j , k) for (int i = (j) , _##end_ = (k) ; i >= _##end_ ; -- i)
#define Set(a , b) memset(a , b , sizeof(a))
#define pb push_back
#define INF (0x7f7f7f7f)
#define Mod (1000000007)
using namespace std;
typedef long long LL;

template <typename T> inline bool chkmax(T &a , T b) { return a < b ? (a = b , 1) : 0; }
template <typename T> inline bool chkmin(T &a , T b) { return b < a ? (a = b , 1) : 0; }

int _ , __;
char c_;
inline int read()
{
    for (_ = 0 , __ = 1 , c_ = getchar() ; !isdigit(c_) ; c_ = getchar()) if (c_ == '-') __ = -1;
    for ( ; isdigit(c_) ; c_ = getchar()) _ = (_ << 1) + (_ << 3) + (c_ ^ 48);
    return _ * __;
}

inline void file()
{
#ifdef hany01
    freopen("bird.in" , "r" , stdin);
    freopen("bird.out" , "w" , stdout);
#endif
}

const int maxn = 10010 , maxm = 1010;

int X[maxn] , Y[maxn] , n , m , Pi , Hi , Li , dp[2][maxm] , l[maxn] , r[maxn] , Ans , k , now;

int main()
{
    file();
    n = read();
    m = read();
    k = read();
    For(i , 1 , n)
        X[i] = read(),
        Y[i] = read();
    For(i , 1 , n)
        l[i] = 1 , r[i] = m;
    For(i , 1 , k)
        Pi = read(),
        Li = read(),
        Hi = read(),
        l[Pi] = Li + 1,
        r[Pi] = Hi - 1;
    For(i , 1 , m)
        dp[0][i] = 0;
    static int t = 0;
    for (int i = 1 ; i <= n ; ++ i , t ^= 1)
    {
        For(j , 1 , m)
            dp[t][j] = INF;
        bool fl = true;
        if (l[i] != 1 || r[i] != m)
            ++ now;
        For(j , X[i] + 1 , m - 1)
        {
            chkmin(dp[t][j] , dp[t][j - X[i]] + 1);
            chkmin(dp[t][j] , dp[t ^ 1][j - X[i]] + 1);
        }
        For(j , m - X[i] , m)
            chkmin(dp[t][m] , dp[t][j] + 1),
            chkmin(dp[t][m] , dp[t ^ 1][j] + 1);
        For(j , 1 , m - Y[i])
            chkmin(dp[t][j] , dp[t ^ 1][j + Y[i]]);
        For(j , 0 , l[i] - 1)
            dp[t][j] = INF;
        For(j , r[i] + 1 , m)
            dp[t][j] = INF;
        For(j , l[i] , r[i])
            if (dp[t][j] != INF)
            {
                fl = false;
                break;
            }
        if (fl)
        {
            puts("0");
            printf("%d\n" , now - 1);
            return 0;
        }
    }
    puts("1");
    Ans = INF;
    t ^= 1;
    For(i , l[n] , r[n])
        chkmin(Ans , dp[t][i]);
    cout << Ans << endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值