【BZOJ3105】【CQOI2013】新Nim游戏(线性基及其与拟阵的关系)

90 篇文章 0 订阅
9 篇文章 0 订阅

Description

一个游戏, 共 N N 堆石子, 第 i 堆有 Ai A i 个. 在第一个回合中, 第一个游戏者可以直接拿走若干个整堆的火柴. 可以一堆都不拿, 但不可以全部拿走. 第二回合也一样, 第二个游戏者也有这样一次机会. 从第三个回合 (又轮到第一个游戏者) 开始, 规则和 Nim 游戏一样.
如果你先拿, 怎样才能保证获胜? 如果可以获胜的话, 还要让第一回合拿的火柴总数尽量小. N100,1Ai109 N ≤ 100 , 1 ≤ A i ≤ 109

Solution

首先线性基是可以直接贪心的,这个可以用拟阵来证明,参考debug18.com

A A 是一个线性空间。
A的所有线性无关子集为 I I ,容易证明M=(A,I)是一个拟阵:
- 遗传性:线性无关组的子集一定线性无关
- 交换性:反证法。设 |X|<|Y| | X | < | Y | ,并且 vYX ∀ v ∈ Y − X XvI X ∪ v ⊈ I ,那么 Y Y 中的所有向量都可以被X中的向量线性表出。但因为 Y Y <script type="math/tex" id="MathJax-Element-1168">Y</script>线性无关,不可能被元素更少的集合完全表示,矛盾。

所以我们可以直接用贪心解决很多线性基的问题。

然后再回到这道题,根据Nim游戏的结论,我们只要使第一次取石子后所有的石子数线性无关即可。
我们可以将权值从大到小排序,每次插入时如果和当前的线性基线性无关,那么就可以记入贡献。

Source

/************************************************
 * Au: Hany01
 * Date: Mar 11th, 2018
 * Prob: [BZOJ3105][CQOI2013] 新Nim游戏
 * Email: hany01@foxmail.com
************************************************/

#include<bits/stdc++.h>

using namespace std;

typedef long long LL;
typedef pair<int, int> PII;
#define rep(i, j) for (register int i = 0, i##_end_ = (j); i < i##_end_; ++ i)
#define For(i, j, k) for (register int i = (j), i##_end_ = (k); i <= i##_end_; ++ i)
#define Fordown(i, j, k) for (register int i = (j), i##_end_ = (k); i >= i##_end_; -- i)
#define Set(a, b) memset(a, b, sizeof(a))
#define Cpy(a, b) memcpy(a, b, sizeof(a))
#define fir first
#define sec second
#define pb(a) push_back(a)
#define mp(a, b) make_pair(a, b)
#define ALL(a) (a).begin(), (a).end()
#define SZ(a) ((int)(a).size())
#define INF (0x3f3f3f3f)
#define INF1 (2139062143)
#define Mod (1000000007)
#define debug(...) fprintf(stderr, __VA_ARGS__)
#define y1 wozenmezhemecaia

template <typename T> inline bool chkmax(T &a, T b) { return a < b ? a = b, 1 : 0; }
template <typename T> inline bool chkmin(T &a, T b) { return b < a ? a = b, 1 : 0; }

inline int read()
{
    register int _, __; register char c_;
    for (_ = 0, __ = 1, c_ = getchar(); c_ < '0' || c_ > '9'; c_ = getchar()) if (c_ == '-') __ = -1;
    for ( ; c_ >= '0' && c_ <= '9'; c_ = getchar()) _ = (_ << 1) + (_ << 3) + (c_ ^ 48);
    return _ * __;
}

inline void File()
{
#ifdef hany01
    freopen("bzoj3105.in", "r", stdin);
    freopen("bzoj3105.out", "w", stdout);
#endif
}

int a[105], b[31], n;
LL Sum, cant;

inline bool Insert(int x)
{
    Fordown(i, 30, 0) {
        if (x >> i & 1) {
            if (!b[i]) { b[i] = x; break; }
            x ^= b[i];
        }
        if (!x) return 0;
    }
    return 1;
}

int main()
{
    File();

    n = read();
    rep(i, n) Sum += a[i] = read();
    sort(a, a + n);

    Fordown(i, n - 1, 0) if (Insert(a[i])) cant += a[i];
    printf("%lld\n", Sum - cant);

    return 0;
}
//少年听雨歌楼上。红烛昏罗帐。
//    -- 蒋捷《虞美人·听雨》
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值