前言
本文内容大部分来自于如下两个博客:
http://blog.csdn.net/dinosoft/article/details/43114935
http://my.oschina.net/liangtee/blog/340317
首先,所有的定义均来自下面的图,一定要理解好。
1 精准率和召回率,通常用在搜索的评价场合。
精准率表示:应该被搜索到的而且实际也搜索出来的(TP)/所有搜索出来的(TP+FP)
召回率表示:应该被搜索到的而且实际也搜索出来的(TP)/所有应该被搜索到(TP+FN)
而 TN 表示不应该被搜索到实际也没搜索出来的,搜索系统一般不关心,所以没有纳入这个指标。
P和R指标有的时候是矛盾的,综合考虑精确率(precision)和召回率(recall)这两个度量值。很容易理解,F1综合了P和R的结果,当F1较高时则比较说明实验方法比较理想。
综合评价指标(F-Measure)是Precision和Recall加权调和平均:
2 准确率和错误率。这一般是分类器采用的指标。而且不但二分类可以用,也可以扩充到多分类的情况。
准确率=准确分类个数/总体=TP+TN/TP+TN+FN+FP
错误率=错误分类个数/总体=FN+FP/TP+TN+FN+FP
3 ROC。
上述方法有个缺点 还需要对预测概率设分类阔值,比如预测概率大于|萄值为正例,反之为负例这使得模型多了一个超参数,并且这个超参数会