ROC与AUC最通俗的解释,准确率,错误率 精准率 召回率,ROC,AUC 的区别和联系

前言

本文内容大部分来自于如下两个博客: 
http://blog.csdn.net/dinosoft/article/details/43114935 
http://my.oschina.net/liangtee/blog/340317

首先,所有的定义均来自下面的图,一定要理解好。

1  精准率和召回率,通常用在搜索的评价场合。

    精准率表示:应该被搜索到的而且实际也搜索出来的(TP)/所有搜索出来的(TP+FP)

    召回率表示:应该被搜索到的而且实际也搜索出来的(TP)/所有应该被搜索到(TP+FN)

而 TN 表示不应该被搜索到实际也没搜索出来的,搜索系统一般不关心,所以没有纳入这个指标。

P和R指标有的时候是矛盾的,综合考虑精确率(precision)和召回率(recall)这两个度量值。很容易理解,F1综合了P和R的结果,当F1较高时则比较说明实验方法比较理想。

综合评价指标(F-Measure)是Precision和Recall加权调和平均:

2  准确率和错误率。这一般是分类器采用的指标。而且不但二分类可以用,也可以扩充到多分类的情况。

        准确率=准确分类个数/总体=TP+TN/TP+TN+FN+FP

        错误率=错误分类个数/总体=FN+FP/TP+TN+FN+FP

3 ROC。

      上述方法有个缺点 还需要对预测概率设分类阔值,比如预测概率大于|萄值为正例,反之为负例这使得模型多了一个超参数,并且这个超参数会

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值