【算法专题】置换群——burnside引理、polya定理

今天朋友问我一道题

一条含有N个珠子的项链,每个珠子都有t种不同的染色。旋转、翻折后相同的项链视为
一种。问有多少本质不同的项链。

想起高中学数学竞赛看《奥赛经典》群置换时遇到过相似的题,遂复习了一下,学习了burnside引理和polya定理,收获颇丰。

先总结一下burnside引理和polya定理应用场景(我遇到的)

经过置换(翻折、旋转)可视为同一种情形下的求染色方案数问题

网上看到一个介绍burnside引理和polya定理的博客,写的通俗易懂:
(链接https://blog.csdn.net/liangzhaoyang1/article/details/72639208)
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述在这里插入图片描述
在这里插入图片描述
其他例题:
HDOJ:2084、2647、1812、3411、2865、2481
POJ:1286、2409、2154、2888

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值