今天朋友问我一道题
一条含有N个珠子的项链,每个珠子都有t种不同的染色。旋转、翻折后相同的项链视为
一种。问有多少本质不同的项链。
想起高中学数学竞赛看《奥赛经典》群置换时遇到过相似的题,遂复习了一下,学习了burnside引理和polya定理,收获颇丰。
先总结一下burnside引理和polya定理应用场景(我遇到的)
经过置换(翻折、旋转)可视为同一种情形下的求染色方案数问题
网上看到一个介绍burnside引理和polya定理的博客,写的通俗易懂:
(链接https://blog.csdn.net/liangzhaoyang1/article/details/72639208)
其他例题:
HDOJ:2084、2647、1812、3411、2865、2481
POJ:1286、2409、2154、2888