组合数学考试题

1. (10 分) 把 6 个不同的球放入 5 个不同的盒子,不允许空盒,有多少种放法?

答:
C(6,2) * 5 !=15 * 120=1800 , 共有 1800 种放法。

2. (10 分) 现在有 4 对夫妻围着圆桌就座,至少有一对夫妻不相邻的坐法有多少种?

答: (2021 国考真题)
4 对夫妻围着圆桌就座的坐法有 (4 * 2-1) !=7 ! 种
每对夫妻都相邻的坐法有: (4-1)!*2^4=96 种
则至少有一对夫妻不相邻的坐法有 7 !-96=4944 种

3. (10 分) 20 个顶点的三部图,最多能有多少条边?

答:
三部图, 即包含三个内部各顶点不相邻但与其它两部分都相邻的图。下图为一个 6 个顶点的三部图的例子。
在这里插入图片描述

当三部图的三个部分平均分配顶点时,三部图的边数最多。所以 20 个顶点的三部图,每个部分平分顶点,分别有 7 、 7 、 6 个顶点,此时三部图有 ( 7 ∗ 13 + 7 ∗ 13 + 6 ∗ 14 ) / 2 = 133 \left(7^{*} 13+7^{*} 13+6 * 14\right) / 2=133 (713+713+614)/2=133 条边。

4. (10 分) 设数列 { a n } \left\{a_{n}\right\} {an} { b n } \left\{b_{n}\right\} {bn} 的母函数分别是 A ( x ) \mathrm{A}(x) A(x) B ( x ) \mathrm{B}(x) B(x) 。如果 b n = ∑ i = 0 n ( a i ) \boldsymbol{b}_{\boldsymbol{n}}= \sum_{i=0}^{n}\left(a_{i}\right) bn=i=0n(ai) , 且 B ( x ) = f ( x ) A ( x ) \mathrm{B}(x)=f(x) A(x) B(x)=f(x)A(x) , 求 f ( x ) f(x) f(x)

答: (2019 国考真题)

设数列 { a i } \left\{a_{i}\right\} {ai}的母函数为 A ( x ) = a 0 + a 1 x + a 2 x 2 + a 3 x 3 + ⋯ \mathrm{A}(x) = a_{0} + a_{1}x + a_{2}x^{2} + a_{3}x^{3} + \cdots A(x)=a0+a1x+a2x2+a3x3+
数列 { b i } \left\{b_{i}\right\} {bi}的母函数为 B ( x ) = b 0 + b 1 x + b 2 x 2 + b 3 x 3 + ⋯ \mathrm{B}(x) = b_{0} + b_{1}x + b_{2}x^{2} + b_{3}x^{3} + \cdots B(x)=b0+b1x+b2x2+b3x3+

已知 b k = a 0 + a 1 + a 2 + a 3 + ⋯ + a k b_{k} = a_{0} + a_{1} + a_{2} + a_{3} + \cdots + a_{k} bk=a0+a1+a2+a3++ak
因此, B ( x ) \mathrm{B}(x) B(x)可以表示为:
B ( x ) = a 0 + ( a 0 + a 1 ) x + ( a 0 + a 1 + a 2 ) x 2 + ( a 0 + a 1 + a 2 + a 3 ) x 3 + ⋯ \mathrm{B}(x) = a_{0} + (a_{0} + a_{1})x + (a_{0} + a_{1} + a_{2})x^{2} + (a_{0} + a_{1} + a_{2} + a_{3})x^{3} + \cdots B(x)=a0+(a0+a1)x+(a0+a1+a2)x2+(a0+a1+a2+a3)x3+

接下来,我们计算 B ( x ) − A ( x ) \mathrm{B}(x) - \mathrm{A}(x) B(x)A(x)
B ( x ) − A ( x ) = a 0 x + ( a 0 + a 1 ) x 2 + ( a 0 + a 1 + a 2 ) x 3 + ⋯ = x ( a 0 + a 1 x + a 2 x 2 + a 3 x 3 + ⋯   ) = x ⋅ B ( x ) \begin{aligned} \mathrm{B}(x) - \mathrm{A}(x) &= a_{0}x + (a_{0} + a_{1})x^{2} + (a_{0} + a_{1} + a_{2})x^{3} + \cdots \\ &= x(a_{0} + a_{1}x + a_{2}x^{2} + a_{3}x^{3} + \cdots) \\ &= x \cdot \mathrm{B}(x) \end{aligned} B(x)A(x)=a0x+(a0+a1)x2+(a0+a1+a2)x3+=x(a0+a1x+a2x2+a3x3+)=xB(x)

由此可得:
B ( x ) = A ( x ) + x ⋅ B ( x ) \mathrm{B}(x) = \mathrm{A}(x) + x \cdot \mathrm{B}(x) B(x)=A(x)+xB(x)
⇒ B ( x ) − x ⋅ B ( x ) = A ( x ) \Rightarrow \mathrm{B}(x) - x \cdot \mathrm{B}(x) = \mathrm{A}(x) B(x)xB(x)=A(x)
⇒ A ( x ) = ( 1 − x ) ⋅ B ( x ) \Rightarrow \mathrm{A}(x) = (1 - x) \cdot \mathrm{B}(x) A(x)=(1x)B(x)

因此, f ( x ) = B ( x ) A ( x ) = 1 1 − x f(x) = \frac{\mathrm{B}(x)}{\mathrm{A}(x)} = \frac{1}{1 - x} f(x)=A(x)B(x)=1x1

所以,我们找到了 f ( x ) f(x) f(x)的表达式,即 f ( x ) = 1 1 − x f(x) = \frac{1}{1 - x} f(x)=1x1

5. (10 分) 请用组合方法证明 ∑ k = 1 n C ( n , k ) k = n 2 n − 1 \sum_{k=1}^{n} C(n, \mathrm{k}) k=n 2^{n-1} k=1nC(n,k)k=n2n1

答:
∑ k = 1 n C ( n , k ) k = C ( n , 1 ) ∗ 1 + C ( n , 2 ) ∗ 2 + C ( n , 3 ) ∗ 3 + ⋯ + C ( n , k ) ∗ n = C ( n , 1 ) + C ( n , 2 ) + C ( n , 2 ) + ⋯ + C ( n , n ) = 2 n − C ( n , 0 ) + 2 n − C ( n , 1 ) − C ( n , 0 ) + ⋯ + 2 n − C ( n , n − 1 ) − C ( n , n − 2 ) − ⋯ − C ( n , 0 ) = n ∗ 2 n − ( n ∗ C ( n , 0 ) + ( n − 1 ) ∗ C ( n , 1 ) + ⋯ + C ( n , n − 1 ) ) = n ∗ 2 n − ( n ∗ C ( n , n ) + ( n − 1 ) ∗ C ( n , n − 1 ) + ⋯ + C ( n , 1 ) ) = n ∗ 2 n − ∑ k = 1 n C ( n , k ) k 2 ∗ ∑ k = 1 n C ( n , k ) k = n ∗ 2 n \begin{array}{l} \sum_{k=1}^{n} C(n, \mathrm{k}) k=C(n, 1) * 1+C(n, 2) * 2+C(n, 3) * 3+\cdots+C(n, \mathrm{k}) * \mathrm{n} \\ =C(n, 1)+C(n, 2)+C(n, 2)+\cdots+C(n, n) \\ =2^{n}-C(n, 0)+2^{n}-C(n, 1)-C(n, 0)+\cdots+2^{n}-C(n, n-1) \\ -C(n, n-2)-\cdots-C(n, 0) \\ =n * 2^{n}-(n * C(n, 0)+(n-1) * C(n, 1)+\cdots+C(n, n-1)) \\ =n * 2^{n}-(n * C(n, n)+(n-1) * C(n, n-1)+\cdots+C(n, 1)) \\ =n * 2^{n}-\sum_{k=1}^{n} C(n, \mathrm{k}) k \\ 2 * \sum_{k=1}^{n} C(n, \mathrm{k}) k=n * 2^{n} \\ \end{array} k=1nC(n,k)k=C(n,1)1+C(n,2)2+C(n,3)3++C(n,k)n=C(n,1)+C(n,2)+C(n,2)++C(n,n)=2nC(n,0)+2nC(n,1)C(n,0)++2nC(n,n1)C(n,n2)C(n,0)=n2n(nC(n,0)+(n1)C(n,1)++C(n,n1))=n2n(nC(n,n)+(n1)C(n,n1)++C(n,1))=n2nk=1nC(n,k)k2k=1nC(n,k)k=n2n

∑ k = 1 n C ( n , k ) k = n ∗ 2 n − 1 \sum_{k=1}^{n} C(n, \mathrm{k}) k=n * 2^{n-1} k=1nC(n,k)k=n2n1

6. (10 分) 用数字 1,2,3 组成的长度为 n 的序列中,数字 1 出现了偶数次,且数字 2 出现了奇数次的序列有多少个?

答:
满足题目要求的指数型母函数为
g ( x ) = ( 1 + x 2 2 ! + x 4 4 ! + ⋯   ) ( x + x 3 3 ! + x 5 5 ! + ⋯   ) ( 1 + x + x 2 2 ! + x 3 3 ! + x 4 4 ! + ⋯   ) = ( e x + e − x 2 ) ∗ ( e x − e − x 2 ) ∗ e x = 1 4 ( e 3 x − e − x ) = 1 4 ∑ n = 0 ∞ ( 3 n − ( − 1 ) n ) x n n ! 1 4 ( 3 n − ( − 1 ) n ) 个  \begin{array}{l} g(x)=\left(1+\frac{x^{2}}{2 !}+\frac{x^{4}}{4 !}+\cdots\right)\left(x+\frac{x^{3}}{3 !}+\frac{x^{5}}{5 !}+\cdots\right)\left(1+x+\frac{x^{2}}{2 !}+\frac{x^{3}}{3 !}+\frac{x^{4}}{4 !}+\cdots\right) \\ =\left(\frac{e^{x}+e^{-x}}{2}\right) *\left(\frac{e^{x}-e^{-x}}{2}\right) * e^{x} \\ =\frac{1}{4}\left(e^{3 x}-e^{-x}\right) \\ =\frac{1}{4} \sum_{n=0}^{\infty}\left(3^{n}-(-1)^{n}\right) \frac{x^{n}}{n !} \\ \frac{1}{4}\left(3^{n}-(-1)^{n}\right)_{\text {个 }} \end{array} g(x)=(1+2!x2+4!x4+)(x+3!x3+5!x5+)(1+x+2!x2+3!x3+4!x4+)=(2ex+ex)(2exex)ex=41(e3xex)=41n=0(3n(1)n)n!xn41(3n(1)n) 

7. (10 分)假设 A 是一个含有有限个元素的非空集合。证明 A 的含有奇数个元素的子集的个数等于含有偶数个元素的子集的个数。

答:
A 中含有 k 个元素的子集的数目是 C(n, k)=n ! / k !(n-k) ! ,则 A 的含有奇数个元素的子集个数等于 C(n, 1)+C(n, 3)+C(n, 5)+\ldots+C(n, n)
根据组合公司 C(n-1, k-1)+C(n-1, k)=C(n, k) ,有
C ( n − 1 , 0 ) + C ( n − 1 , 1 ) = C ( n , 1 ) C ( n − 1 , 2 ) + C ( n − 1 , 3 ) = C ( n , 3 ) … … C ( n − 1 , 2 k ) + C ( n − 1 , 2 k + 1 ) = C ( n , 2 k + 1 ) \begin{array}{l} C(n-1,0)+C(n-1,1)=C(n, 1) \\ C(n-1,2)+C(n-1,3)=C(n, 3) \\ \ldots \ldots \\ C(n-1,2 k)+C(n-1,2 k+1)=C(n, 2 k+1) \end{array} C(n1,0)+C(n1,1)=C(n,1)C(n1,2)+C(n1,3)=C(n,3)……C(n1,2k)+C(n1,2k+1)=C(n,2k+1)

两边相加得
C ( n − 1 , 0 ) + C ( n − 1 , 1 ) + C ( n − 1 , 2 ) + C ( n − 1 , 3 ) + … + C ( n − 1 , 2 k ) + C ( n − 1 , 2 k + 1 ) = C ( n , 1 ) + C ( n , 3 ) + … + C ( n , 2 k + 1 ) \begin{array}{l} C(n-1,0)+C(n-1,1)+C(n-1,2)+C(n-1,3)+\ldots+C(n-1,2 k)+C(n-1,2 k+1)=C(n, 1)+ \\ C(n, 3)+\ldots+C(n, 2 k+1) \end{array} C(n1,0)+C(n1,1)+C(n1,2)+C(n1,3)++C(n1,2k)+C(n1,2k+1)=C(n,1)+C(n,3)++C(n,2k+1)

2 k + 1 = n 2 \mathrm{k}+1=\mathrm{n} 2k+1=n ,有
( 1 + 1 ) n − 1 = C ( n , 1 ) + C ( n , 3 ) + ⋯ + C ( n , n ) 2 n − 1 = C ( n , 1 ) + C ( n , 3 ) + ⋯ + C ( n , n ) \begin{array}{l} (1+1)^{n-1}=C(n, 1)+C(n, 3)+\cdots+C(n, n) \\ 2^{n-1}=C(n, 1)+C(n, 3)+\cdots+C(n, n) \end{array} (1+1)n1=C(n,1)+C(n,3)++C(n,n)2n1=C(n,1)+C(n,3)++C(n,n)

同理可得 A \mathrm{A} A 的含有偶数个元素的子集个数也为 2 n − 1 2^{n-1} 2n1 。即 A \mathrm{A} A 的含有奇数个元素的子集的个数等于含有偶数个元素的子集的个数。

8. (10 分) 会议室里有 n \mathbf{n} n 个人,会议开始前他们有些人相互握了手。请证明一定存在两个人,他们握手的次数相同。

答:
n \mathrm{n} n 个人,则每个人最多握手 n − 1 \mathrm{n}-1 n1 次。根据鸲笼原理,至少存在两个人,他们握手的次数相同。

9. (10 分) A、B、C、D、E、F 六名保安,要排一下国庆黄金周的值班工作。a 不能在周一值班, B 不能在周二值班,C 不能在周三值班,请问有多少种排法?

答: (2021 国考题)
A 在周一值班的排法有 5 种
B 在周二值班的排法有 5 ! 种
C 在周三值班的排法有 5 ! 种
A 在周一值班的排法,B 在周二值班的排法有 4 !
A \mathrm{A} A 在周一值班的排法,C 在周三值班的排法有 4 !
B 在周二值班的排法, C 在周三值班的排法有 4 !
A \mathrm{A} A 在周一值班的排法, B 在周二值班的排法, C 在周三值班的排法有 3 !
根据容斥原理,

6 !-3 * 5 !+3 * 4 !-3 !=720-360+72-6=426

即 a 不能在周一值班,B 不能在周二值班,C 不能在周三值班有 426 种排法

10. (10 分) 求 1 0 40 10^{40} 1040 2 0 30 20^{30} 2030 的公因子有多少个。

答:
1 0 40 = 2 40 ∗ 5 40 2 0 30 = 2 60 ∗ 5 30 \begin{array}{l} 10^{40}=2^{40} * 5^{40} \\ 20^{30}=2^{60} * 5^{30} \end{array} 1040=2405402030=260530

 所以  1 0 40  和  2 0 30  的公因子有  C ( 41 , 1 ) ∗ C ( 31 , 1 ) = 1271  个  \text { 所以 } 10^{40} \text { 和 } 20^{30} \text { 的公因子有 } C(41,1) * C(31,1)=1271 \text { 个 }  所以 1040  2030 的公因子有 C(41,1)C(31,1)=1271  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI浩

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值