离散数学
一、用逻辑符号表达下列语句(论域为包含一切事物的集合)
1)过平面上的两个点,有且仅有一条直线通过。
解析:
P
(
x
,
y
)
:
x
,
y
是平面上的两个点,
P_{(x, y)}: ~ \mathrm{x}, \mathrm{y} \text { 是平面上的两个点,}
P(x,y): x,y 是平面上的两个点,
Q
(
x
,
y
,
z
)
:
z
是过
x
和
y
的直线,
Q_{(x, y, z)}: \mathrm{z} \text { 是过 } \mathrm{x} \text { 和 } \mathrm{y} \text { 的直线,}
Q(x,y,z):z 是过 x 和 y 的直线,
R
(
x
,
y
)
:
x
与
y
相同
R_{(x, y)} :x与y相同
R(x,y):x与y相同
∀ x ∀ y ∀ z ∃ w P ( x , y ) ∧ Q ( x , y , z ) ∧ Q ( x , y , w ) → R ( z , w ) \forall x \forall y \forall z \exists w P_{(x, y)} \wedge Q_{(x, y, z)} \wedge Q_{(x, y, w)} \rightarrow R_{(z, w)} ∀x∀y∀z∃wP(x,y)∧Q(x,y,z)∧Q(x,y,w)→R(z,w)
2)并不是所有的士兵都想当将军,而且不想当将军的士兵未必不是好士兵(一种形式,包含全称量词和存在量词)。
解析:
P
(
x
)
:
x
是士兵,
Q
(
x
)
:
x
想当将军,
R
(
x
)
x是好士兵;
¬
∀
x
P
(
x
)
→
Q
(
x
)
∧
∃
x
(
⌝
(
x
)
∧
R
(
x
)
)
\begin{array}{l} \text { 解析:} P_{(x)}: x \text { 是士兵,} Q_{(x)}: \mathrm{x} \text { 想当将军,} R_{(x)} \text { x是好士兵;}\\ \left.\neg \forall x P_{(x)} \rightarrow Q_{(x)} \wedge \exists x( \urcorner_{(x)} \wedge R_{(x)}\right) \end{array}
解析:P(x):x 是士兵,Q(x):x 想当将军,R(x) x是好士兵;¬∀xP(x)→Q(x)∧∃x(┐(x)∧R(x))
二、填空题
1.集合A={1,2,3,4,5,6,7}, A上的一个划分R={{1,2},{3,4,5},{6,7}}.那么所对应的等价关系R包含的有序对的个数是( )个.定义偏序关系为集合A上的整除关系,则这个偏序关系上含有的有序对个数是( )个.集合A上有( )个既是对称又是反对称的关系。
-
等价关系的有序对个数:
每个划分块内的元素形成完全连接的等价类。计算每个块的有序对数目:- {1,2}: (2^2 = 4) 个
- {3,4,5}: (3^2 = 9) 个
- {6,7}: (2^2 = 4) 个
总计:(4 + 9 + 4 = 17)
-
整除关系的有序对个数:
列出所有整除关系:- 1整除所有数:(7) 对(包括自反)
- 2整除2、4、6:(3) 对
- 3整除3、6:(2) 对
- 4、5、6、7仅自反:各(1) 对
总计:(7 + 3 + 2 + 1 + 1 + 1 + 1 = 16)
-
既对称又反对称的关系数目:
这类关系只能包含自反边(若包含非自反边,对称性要求双向,但反对称性强制两端相等,矛盾)。
每个元素的自反边可独立选择存在与否,共(2^7 = 128) 种可能。
答案:
4. (17)
5. (16)
6. (128)
1. 对称性与反对称性的定义
- 对称性:若关系包含有序对 ((a, b)),则必须包含 ((b, a))。
- 反对称性:若关系同时包含 ((a, b)) 和 ((b, a)),则必有 ( a = b )。
2. 推导关系的形式
同时满足对称和反对称的关系需满足:
-
对任意不同元素 ( a \neq b ):
不能存在 ((a, b)) 或 ((b, a))。
原因:若存在 ((a, b)),对称性要求必须存在 ((b, a)),但反对称性要求 ( a = b ),矛盾。因此,对任意 ( a \neq b ),关系中不能包含 ((a, b)) 或 ((b, a))。 -
对任意元素 ( a ):
可以自由选择是否包含自反对 ((a, a))。
原因:自反对 ((a, a)) 满足对称性(反向仍是自身),也不违反反对称性(( a = a ) 是允许的)。
3. 可能的组合方式
关系只能由自反对 ((a, a)) 构成,且每个自反对的包含与否是独立的:
- 集合 ( A ) 有 7 个元素,每个元素对应一个自反对 ((a, a))。
- 对每个自反对,有两种选择:包含 或 不包含。
4. 计算总数
总共有 ( 2^7 = 128 ) 种可能的关系。
5. 验证特例
- 空关系:不包含任何自反对,满足对称性和反对称性。
- 全自反关系:包含所有自反对 ((1,1), (2,2), … \dots …, (7,7)),同样满足条件。
最终答案
集合 ( A ) 上既对称又反对称的关系共有
128
\boxed{128}
128 个。
2、已知集合A={a,b,c,d}上的两个关系R1={<a,a>,<a,b>,<b,c>},R2={<a,b>,<b,c>,<c,d>,<d,b>}.则R2^2=,R2OR1=___
R²的计算(R2∘R2):
- 步骤:对于每个元素<x,y>∈R2,寻找R2中以y为第一个元素的<y,z>,得到<x,z>。
- 结果:
- <a,b> → 结合<b,c>得<a,c>
- <b,c> → 结合<c,d>得<b,d>
- <c,d> → 结合<d,b>得<c,b>
- <d,b> → 结合<b,c>得<d,c>
- R² = { <a,c>, <b,d>, <c,b>, <d,c> }
R2∘R1的计算:
- 步骤:对于每个元素<x,y>∈R1,寻找R2中以y为第一个元素的<y,z>,得到<x,z>。
- 结果:
- <a,a> → 结合<a,b>得<a,b>
- <a,b> → 结合<b,c>得<a,c>
- <b,c> → 结合<c,d>得<b,d>
- R2∘R1 = { <a,b>, <a,c>, <b,d> }
最终答案:
-
R² =
{ ⟨ a , c ⟩ , ⟨ b , d ⟩ , ⟨ c , b ⟩ , ⟨ d , c ⟩ } \boxed{\{\langle a,c \rangle, \langle b,d \rangle, \langle c,b \rangle, \langle d,c \rangle\}} {⟨a,c⟩,⟨b,d⟩,⟨c,b⟩,⟨d,c⟩} -
R2∘R1 =
{ ⟨ a , b ⟩ , ⟨ a , c ⟩ , ⟨ b , d ⟩ } \boxed{\{\langle a,b \rangle, \langle a,c \rangle, \langle b,d \rangle\}} {⟨a,b⟩,⟨a,c⟩,⟨b,d⟩}
3.一个商店提供了3种不同的钢笔,假设顾客小王进店时,每种钢笔至少有5支.则小王选5支钢笔的方式有( )种.
用 S 是有 k 种类型对象的多重集合,每种元素具有无限的重复数,那么 S 的 r 组合的个数为: C ( r + k − 1 , r ) \mathrm{C}_{(\mathrm{r}+\mathrm{k}-1, \mathrm{r})} C(r+k−1,r) ;在本题中答案 C ( 7 , 5 ) = C ( 7 , 2 ) = 21 \mathrm{C}_{(7,5)}=\mathrm{C}_{(7,2)}=21 C(7,5)=C(7,2)=21
4.设 K m , n K_{m,n} Km,n是两部分分别有m和n个顶点的完全二部图,则 K m , n K_{m,n} Km,n的着色数是( )。
完全二部图 ( K m , n K_{m,n} Km,n ) 的顶点可以被划分为两个互不相交的集合,分别包含 ( m ) 个和 ( n ) 个顶点,且两个集合之间的每一对顶点均有一条边相连,而同一集合内的顶点无边相连。根据顶点着色数的定义,相邻顶点需颜色不同。由于二部图的特性,只需用两种颜色分别对两个顶点集着色即可满足条件,因此其顶点着色数为 2。
答案:
(
2
\boxed{2}
2)
5.设树 T 的顶点集合为 V = { v 1 , v 2 , … , v n } \mathrm{V}=\{\mathrm{v} 1, \mathrm{v} 2, \ldots, \mathrm{vn}\} V={v1,v2,…,vn} , T 的平均度为 D = 1 n ∑ i = 1 n v i \mathrm{D}=\frac{1}{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{v}_{\mathrm{i}} D=n1∑i=1nvi,请用 D 表示出树 T 的顶点个数 n = ( ) \mathrm{n}=(\quad) n=()
树:无圈的连通图即为树( n 个顶点的树有 n-1 条边)因为数有 n 个顶点,所以有
n
−
1
\mathrm{n}-1
n−1 个边,
根据握手定理
∑
i
=
0
n
d
(
v
i
)
=
2
(
n
−
1
)
\sum_{i=0}^{n} d(\mathrm{vi})=2(\mathrm{n}-1)
∑i=0nd(vi)=2(n−1)
2
(
n
−
1
)
=
n
∗
D
n
=
2
/
(
2
−
D
)
\begin{array}{l} 2(n-1)=n^{*} D \\ n=2 /(2-D) \end{array}
2(n−1)=n∗Dn=2/(2−D)
三、计算题
1)个体域 { a , b , c } \{\mathrm{a}, \mathrm{b}, \mathrm{c}\} {a,b,c} ,将下列公式写成命题逻辑公式 ( ∀ x ) P ( x ) − > ( ∃ y ) Q ( y ) (\forall \mathrm{x}) \mathrm{P}(\mathrm{x})->(\exists y) \mathrm{Q}(\mathrm{y}) (∀x)P(x)−>(∃y)Q(y)
将全称量词和存在量词在个体域{a, b, c}下展开为命题逻辑公式:
原公式为 ( ∀ x ) P ( x ) → ( ∃ y ) Q ( y ) (\forall x)P(x) \rightarrow (\exists y)Q(y) (∀x)P(x)→(∃y)Q(y),具体步骤如下:
-
展开全称量词:
∀ x P ( x ) ≡ P ( a ) ∧ P ( b ) ∧ P ( c ) \forall x P(x) \quad \equiv \quad P(a) \land P(b) \land P(c) ∀xP(x)≡P(a)∧P(b)∧P(c) -
展开存在量词:
∃ y Q ( y ) ≡ Q ( a ) ∨ Q ( b ) ∨ Q ( c ) \exists y Q(y) \quad \equiv \quad Q(a) \lor Q(b) \lor Q(c) ∃yQ(y)≡Q(a)∨Q(b)∨Q(c) -
处理蕴含关系:
根据命题逻辑的等价关系 A → B ≡ ¬ A ∨ B A \rightarrow B \equiv \lnot A \lor B A→B≡¬A∨B,原式可转换为:
¬ ( P ( a ) ∧ P ( b ) ∧ P ( c ) ) ∨ ( Q ( a ) ∨ Q ( b ) ∨ Q ( c ) ) \lnot (P(a) \land P(b) \land P(c)) \lor (Q(a) \lor Q(b) \lor Q(c)) ¬(P(a)∧P(b)∧P(c))∨(Q(a)∨Q(b)∨Q(c)) -
应用德摩根定律:
¬ ( P ( a ) ∧ P ( b ) ∧ P ( c ) ) ≡ ¬ P ( a ) ∨ ¬ P ( b ) ∨ ¬ P ( c ) \lnot (P(a) \land P(b) \land P(c)) \quad \equiv \quad \lnot P(a) \lor \lnot P(b) \lor \lnot P(c) ¬(P(a)∧P(b)∧P(c))≡¬P(a)∨¬P(b)∨¬P(c) -
合并析取项:
最终公式为:
¬ P ( a ) ∨ ¬ P ( b ) ∨ ¬ P ( c ) ∨ Q ( a ) ∨ Q ( b ) ∨ Q ( c ) \lnot P(a) \lor \lnot P(b) \lor \lnot P(c) \lor Q(a) \lor Q(b) \lor Q(c) ¬P(a)∨¬P(b)∨¬P(c)∨Q(a)∨Q(b)∨Q(c)
答案:
¬
P
(
a
)
∨
¬
P
(
b
)
∨
¬
P
(
c
)
∨
Q
(
a
)
∨
Q
(
b
)
∨
Q
(
c
)
\boxed{\lnot P(a) \lor \lnot P(b) \lor \lnot P(c) \lor Q(a) \lor Q(b) \lor Q(c)}
¬P(a)∨¬P(b)∨¬P(c)∨Q(a)∨Q(b)∨Q(c)
2)计算下式的主析取范式和主合取范式 ( ¬ P ∨ Q ) → ( Q ∧ ¬ R ) (\neg \mathrm{P} \vee Q) \rightarrow(Q \wedge \neg R) (¬P∨Q)→(Q∧¬R) 用极小项和极大项数字表示简洁。
要计算公式 ((\neg P \vee Q) \rightarrow (Q \wedge \neg R)) 的主析取范式和主合取范式,首先构造其真值表,并确定结果为真和假的赋值情况:
真值表
P | Q | R | ( ¬ P ∨ Q ) → ( Q ∧ ¬ R ) (\neg P \vee Q) \rightarrow (Q \wedge \neg R) (¬P∨Q)→(Q∧¬R) | 结果 |
---|---|---|---|---|
0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 1 | 0 | 1 | 1 |
0 | 1 | 1 | 0 | 0 |
1 | 0 | 0 | 1 | 1 |
1 | 0 | 1 | 1 | 1 |
1 | 1 | 0 | 1 | 1 |
1 | 1 | 1 | 0 | 0 |
主析取范式(PDNF)
结果为1的赋值对应极小项:
- ( m_2 )(0,1,0): ¬ P ∧ Q ∧ ¬ R \neg P \wedge Q \wedge \neg R ¬P∧Q∧¬R
- ( m_4 )(1,0,0): P ∧ ¬ Q ∧ ¬ R P \wedge \neg Q \wedge \neg R P∧¬Q∧¬R
- ( m_5 )(1,0,1): P ∧ ¬ Q ∧ R P \wedge \neg Q \wedge R P∧¬Q∧R
- ( m_6 )(1,1,0): P ∧ Q ∧ ¬ R P \wedge Q \wedge \neg R P∧Q∧¬R
主析取范式为这些极小项的析取:
∑
(
2
,
4
,
5
,
6
)
\boxed{\sum(2,4,5,6)}
∑(2,4,5,6)
主合取范式(PCNF)
结果为0的赋值对应极大项:
- ( M_0 )(0,0,0): P ∨ Q ∨ R P \vee Q \vee R P∨Q∨R
- ( M_1 )(0,0,1): P ∨ Q ∨ ¬ R P \vee Q \vee \neg R P∨Q∨¬R
- ( M_3 )(0,1,1): P ∨ ¬ Q ∨ ¬ R P \vee \neg Q \vee \neg R P∨¬Q∨¬R
- ( M_7 )(1,1,1): ¬ P ∨ ¬ Q ∨ ¬ R \neg P \vee \neg Q \vee \neg R ¬P∨¬Q∨¬R
主合取范式为这些极大项的合取:
则主析取范式为
(
⌝
P
∨
Q
)
→
(
Q
∧
⌝
R
)
⇔
m
2
∨
m
4
∨
m
5
∨
m
6
( \urcorner P \vee Q) \rightarrow(Q \wedge\urcorner R) \Leftrightarrow m_{2} \vee m_{4} \vee m_{5} \vee m_{6}
(┐P∨Q)→(Q∧┐R)⇔m2∨m4∨m5∨m6
主合取范式为
(
⌝
P
∨
Q
)
→
(
Q
∧
⌝
R
)
⇔
M
0
∧
M
1
∧
M
3
∧
M
7
( \urcorner P \vee Q) \rightarrow(Q \wedge\urcorner R) \Leftrightarrow M_{0} \wedge M_{1} \wedge M_{3} \wedge M_{7}
(┐P∨Q)→(Q∧┐R)⇔M0∧M1∧M3∧M7
四、解答题
1)写出集合A上的一种关系,它既是等价关系,又是偏序关系,并简要说明这种关系的特点。
解:设集合A={a,b,c}, 等价关系满足的条件是:自反,对称,传递;而满足偏序关系的条件是:自反,反对称,传递。条件中A的关系R需满足等价和偏序关系,也就是R必须满足既是对称又是反对称关系。则 R = {| x=y}即关系矩阵对角线上的数都为1,因此该关系为集合A上的每个元素自成环,无其他关系路径。
2)求满足递推关系 h n = h n − 1 + 9 h n − 2 − 9 h n − 3 h_{n}=h_{n-1}+9 h_{n-2}-9 h_{n-3} hn=hn−1+9hn−2−9hn−3 中 h n h_{n} hn 的表达式,其中 n ≥ 3 \mathrm{n} \geq 3 n≥3 ,初始条件 h 0 = 0 , h 1 = 1 , h 2 = 2 h_{0}=0, h_{1}=1, h_{2}=2 h0=0,h1=1,h2=2 。
解析:本题考的是常系数齐次递推关系。题中原式转化成
h
n
−
h
n
−
1
−
9
h
n
−
2
+
9
h
n
−
3
=
0
h_{n}-h_{n-1}-9 h_{n-2}+9 h_{n-3}=0
hn−hn−1−9hn−2+9hn−3=0 ,因此该式特征方程为
q
3
−
q
2
−
9
q
+
9
=
0
q^{3}-q^{2}-9 q+9=0
q3−q2−9q+9=0 。
q
2
(
q
−
1
)
−
9
(
q
−
1
)
=
0
⇒
(
q
2
−
9
)
(
q
−
1
)
=
0
q^{2}(q-1)-9(q-1)=0 \Rightarrow\left(q^{2}-9\right)(q-1)=0
q2(q−1)−9(q−1)=0⇒(q2−9)(q−1)=0 。
得到特征根
q
1
=
−
3
,
q
2
=
3
,
q
3
=
1
q_{1}=-3, q_{2}=3, q_{3}=1
q1=−3,q2=3,q3=1 。
三个特征无重根,则该 h_{n} 的一般解为:
H
n
=
C
1
q
1
n
+
C
2
q
2
n
+
C
3
q
3
n
H_{n}=C_{1} q_{1}^{n}+C_{2} q_{2}^{n}+C_{3} q_{3}^{n}
Hn=C1q1n+C2q2n+C3q3n 把三个特征根代入式子中可得
H
n
=
C
1
(
−
3
)
n
+
C
2
(
3
)
n
+
C
3
(
1
)
n
=
C
1
(
−
3
)
n
+
C
2
3
n
+
C
3
H_{n}=C_{1}(-3)^{n}+C_{2}(3)^{n}+C_{3}(1)^{n}=C_{1}(-3)^{n}+C_{2} 3^{n}+C_{3}
Hn=C1(−3)n+C2(3)n+C3(1)n=C1(−3)n+C23n+C3 。把
h
0
=
0
,
h
1
=
1
,
h
2
=
2
h_{0}=0, h_{1}=1, h_{2}=2
h0=0,h1=1,h2=2 代入
H
n
H_{n}
Hn 得到三个等式
H
0
=
C
1
+
C
2
+
C
3
=
0
H_{0}=C_{1}+C_{2}+C_{3}=0
H0=C1+C2+C3=0
H
1
=
−
3
C
1
+
3
C
2
+
C
3
=
1
H_{1}=-3 C_{1}+3 C_{2}+C_{3}=1
H1=−3C1+3C2+C3=1
H
2
=
9
C
1
+
9
C
2
+
C
3
=
2
H_{2}=9 C_{1}+9 C_{2}+C_{3}=2
H2=9C1+9C2+C3=2 .
解这三个三元一次方程组得 : C 1 = − 1 12 , C 2 = 1 3 , C 3 = − 1 4 C_{1}=-\frac{1}{12}, C_{2}=\frac{1}{3}, C_{3}=-\frac{1}{4} C1=−121,C2=31,C3=−41 代入得解
H n = − 1 12 ∗ ( − 3 ) n + 1 3 ∗ 3 n − 1 4 = 1 4 ∗ ( − 3 ) ( n − 1 ) + 3 ( n − 1 ) − 1 4 H_{n}=-\frac{1}{12} *(-3)^{n}+\frac{1}{3} * 3^{n}-\frac{1}{4}=\frac{1}{4} *(-3)^{(n-1)}+3^{(n-1)}-\frac{1}{4} Hn=−121∗(−3)n+31∗3n−41=41∗(−3)(n−1)+3(n−1)−41
3)设序列 { a i } \left\{a_{i}\right\} {ai} 的母函数是 A ( x ) \mathrm{A}(\mathrm{x}) A(x) ,序列 { b i } \left\{b_{i}\right\} {bi} 的母函数是 B ( x ) \mathrm{B}(\mathrm{x}) B(x) ,如果 b k = ∑ i = 0 k a i b_{k}=\sum_{i=0}^{k} a_{i} bk=∑i=0kai ,且 B(x)=f(x) A(x) ,求 f(x) .
解:由题可得:
A
(
x
)
=
∑
i
=
0
∞
a
i
x
i
A_{(x)}=\sum_{i=0}^{\infty} a_{i} x^{i}
A(x)=∑i=0∞aixi 且
b
k
=
∑
i
=
0
k
a
i
b_{k}=\sum_{i=0}^{k} a_{i}
bk=∑i=0kai 得
B
(
x
)
=
∑
i
=
0
∞
(
∑
j
=
0
i
a
(
j
)
)
x
i
=
a
0
x
0
+
(
a
0
x
1
+
a
0
x
1
)
+
(
a
0
x
2
+
a
1
x
2
+
a
2
x
2
)
+
⋯
+
(
a
0
x
n
+
a
1
x
n
+
⋯
+
a
n
x
n
)
+
⋯
=
a
0
(
x
0
+
⋯
x
n
+
⋯
)
+
a
1
x
(
x
0
+
⋯
x
n
+
⋯
)
+
a
2
x
2
(
x
0
+
x
1
⋯
x
n
+
⋯
)
+
⋯
=
a
0
1
1
−
x
+
a
1
x
1
1
−
x
+
a
1
x
2
1
1
−
x
+
⋯
=
=
1
1
−
x
∗
(
a
0
+
a
1
x
+
a
2
x
2
+
⋯
)
=
A
(
x
)
1
1
−
x
\begin{array}{l} \mathrm{B}_{(\mathrm{x})}=\sum_{i=0}^{\infty}\left(\sum_{j=0}^{i} a_{(j)}\right) x^{i}=a_{0} x^{0}+\left(a_{0} x^{1}+a_{0} x^{1}\right)+\left(a_{0} x^{2}+a_{1} x^{2}+a_{2} x^{2}\right)+\cdots+ \\ \left(a_{0} x^{n}+a_{1} x^{n}+\cdots+a_{n} x^{n}\right)+\cdots=a_{0}\left(x^{0}+\cdots x^{n}+\cdots\right)+a_{1} x\left(x^{0}+\cdots x^{n}+\cdots\right)+ \\ a_{2} x^{2}\left(x^{0}+x^{1} \cdots x^{n}+\cdots\right)+\cdots=a_{0} \frac{1}{1-x}+a_{1} x \frac{1}{1-x}+a_{1} x^{2} \frac{1}{1-x}+\cdots== \\ \frac{1}{1-x} *\left(a_{0}+a_{1} x+a_{2} x^{2}+\cdots\right)= \\ A_{(x)} \frac{1}{1-x} \end{array}
B(x)=∑i=0∞(∑j=0ia(j))xi=a0x0+(a0x1+a0x1)+(a0x2+a1x2+a2x2)+⋯+(a0xn+a1xn+⋯+anxn)+⋯=a0(x0+⋯xn+⋯)+a1x(x0+⋯xn+⋯)+a2x2(x0+x1⋯xn+⋯)+⋯=a01−x1+a1x1−x1+a1x21−x1+⋯==1−x1∗(a0+a1x+a2x2+⋯)=A(x)1−x1
又由于
B
(
x
)
=
f
(
x
)
A
(
x
)
;
f
(
x
)
=
1
1
−
x
B_{(x)}=f_{(x)} A_{(x)} ; f_{(x)}=\frac{1}{1-x}
B(x)=f(x)A(x);f(x)=1−x1
五、证明题
证明下面恒等式
(
n
k
)
+
(
n
+
1
k
)
+
(
n
+
2
k
)
+
…
+
(
n
+
m
k
)
=
(
n
+
m
+
1
k
+
1
)
−
(
n
k
+
1
)
\begin{array}{l} \binom{\mathrm{n}}{\mathrm{k}}+\binom{\mathrm{n}+1}{\mathrm{k}}+\binom{\mathrm{n}+2}{\mathrm{k}}+\ldots+\binom{\mathrm{n}+\mathrm{m}}{\mathrm{k}}=\binom{\mathrm{n}+\mathrm{m}+1}{\mathrm{k}+1}-\binom{\mathrm{n}}{\mathrm{k}+1} \end{array}
(kn)+(kn+1)+(kn+2)+…+(kn+m)=(k+1n+m+1)−(k+1n)
表示n元素中取i个的组合数。
公式:
C
(
n
,
k
+
1
)
=
C
(
n
−
1
,
k
+
1
)
+
C
(
n
−
1
,
k
)
C(n, k+1) = C(n-1, k+1) + C(n-1, k)
C(n,k+1)=C(n−1,k+1)+C(n−1,k)
计算机网络
一、填空题
1.以太网的争用期是指( 冲突检测的时间(或512位时间)),以太网发送数据使用( 曼彻斯特 )编码
2.一个广域网传输比特率是4kbps,传播时延为20ms,若采用停-等协议效率是50%,帧长至少为( 160 )位
要确定采用停-等协议时帧的最小长度,需分析协议效率与传输参数的关系:
关键公式推导
停-等协议效率
η
\eta
η 定义为:
η
=
T
发送
T
发送
+
T
RTT
\eta = \frac{T_{\text{发送}}}{T_{\text{发送}} + T_{\text{RTT}}}
η=T发送+TRTTT发送
其中:
- T 发送 = L B T_{\text{发送}} = \frac{L}{B} T发送=BL(发送时间,( L ) 为帧长,( B ) 为比特率)
- T RTT = 2 × 传播时延 T_{\text{RTT}} = 2 \times \text{传播时延} TRTT=2×传播时延(往返时延)
代入已知条件
-
参数设定:
- 比特率 ( B = 4 , \text{kbps} = 4000 , \text{bps} )
- 传播时延 ( = 20 , \text{ms} = 0.02 , \text{s} )
- 往返时延 ( T_{\text{RTT}} = 2 \times 0.02 = 0.04 , \text{s} )
- 效率 ( \eta = 50% = 0.5 )
-
方程建立:
0.5 = L 4000 L 4000 + 0.04 0.5 = \frac{\frac{L}{4000}}{\frac{L}{4000} + 0.04} 0.5=4000L+0.044000L
求解帧长 ( L )
- 交叉相乘:
0.5 ( L 4000 + 0.04 ) = L 4000 0.5 \left( \frac{L}{4000} + 0.04 \right) = \frac{L}{4000} 0.5(4000L+0.04)=4000L - 展开并整理:
0.5 ⋅ L 4000 + 0.02 = L 4000 0.5 \cdot \frac{L}{4000} + 0.02 = \frac{L}{4000} 0.5⋅4000L+0.02=4000L
0.02 = L 4000 − 0.5 ⋅ L 4000 0.02 = \frac{L}{4000} - 0.5 \cdot \frac{L}{4000} 0.02=4000L−0.5⋅4000L
0.02 = 0.5 L 4000 0.02 = \frac{0.5L}{4000} 0.02=40000.5L - 解方程:
L = 0.02 × 4000 0.5 = 80 0.5 = 160 位 L = \frac{0.02 \times 4000}{0.5} = \frac{80}{0.5} = 160 \, \text{位} L=0.50.02×4000=0.580=160位
验证与结论
- 结果合理性:帧长需满足 L ≥ 160 位 L \geq 160 \, \text{位} L≥160位,才能保证效率不低于50%。
- 关键假设:确认帧的传输时间忽略不计(停-等协议中确认帧通常极短)。
最终答案
160
\boxed{160}
160
3.一个网段的网络号为130.10.3.0/21,子网掩码可以写为( )
子网掩码的计算基于CIDR表示法中的前缀长度/21,即前21位为网络部分。将21位转换为点分十进制格式:
- 前两个字节(16位)全为1,对应
255.255
。 - 第三个字节的前5位为1,计算其值:
( 128 + 64 + 32 + 16 + 8 = 248 ),因此第三个字节为248
。 - 第四个字节全为0,即
0
。
最终子网掩码为:
255.255.248.0
\boxed{255.255.248.0}
255.255.248.0
验证步骤
- IP地址:130.10.3.0
- 子网掩码:255.255.248.0
- 二进制运算:
- 第三个字节
3
(00000011
)与248
(11111000
)按位与,结果为00000000
。 - 网络地址为
130.10.0.0/21
,但题目中的网络号写作130.10.3.0/21
,可能为表述简化或特定子网划分场景,不影响子网掩码计算结果。
- 第三个字节
结论
无论网络号的具体值如何,CIDR /21
对应的子网掩码始终为 255.255.248.0。
4,TCP协议中发送窗口的大小应该由()窗口和( )窗口中较小的一个决定
TCP协议中发送窗口的大小由接收方的处理能力和网络的拥塞状态共同决定。发送方需要确保发送的数据量既不超过接收方的处理能力,也不会导致网络拥塞。因此,发送窗口的大小应取以下两个窗口的较小值:
-
接收窗口(rwnd):由接收方通过TCP报文段中的窗口字段(Window Size)通告,表示接收方当前可用的缓冲区大小。发送方必须遵守这一限制,避免发送过多数据导致接收方无法处理。
-
拥塞窗口(cwnd):由发送方根据网络拥塞状态动态调整,通过拥塞控制算法(如慢启动、拥塞避免)确定。其目的是避免网络过载,确保数据传输的稳定性。
发送窗口的最终大小为:
发送窗口
=
min
(
rwnd
,
cwnd
)
\text{发送窗口} = \min(\text{rwnd}, \text{cwnd})
发送窗口=min(rwnd,cwnd)
最终答案
TCP协议中发送窗口的大小应该由(接收)窗口和(拥塞)窗口中较小的一个决定。
接收
\boxed{接收}
接收,
拥塞
\boxed{拥塞}
拥塞
二,选择题
1.数据链链路层采用后退N帧协议,若发送㮩口大小是16,那至少需要()位序号才能保证不出错
A. 7
B. 6
C. 5
D. 4
在后退N帧协议(GBN)中,发送窗口的大小 ( W ) 必须满足 ( W \leq 2^n - 1 ),其中 ( n ) 为序号位数。题目中发送窗口大小为16,因此需要找到最小的 ( n ) 使得 ( 2^n - 1 \geq 16 )。
- 计算过程:
- ( n = 4 ) 时,( 2^4 - 1 = 15 ),不满足 ( 15 \geq 16 )。
- ( n = 5 ) 时,( 2^5 - 1 = 31 ),满足 ( 31 \geq 16 )。
因此,至少需要 5位序号 才能保证协议正常工作。
C \boxed{C} C
2.一台主机的IP地址为 152.68 .70 .3 ,子网掩码为 255.255 .224 .0 ,必责路由器才能与该主机通信的是 ()
A.152.68.62.23
B.152.68.67.15
C.152.68.85.220
D.152.68.90.30
要确定必须通过哪个路由器才能与主机152.68.70.3(子网掩码255.255.224.0)通信,需验证选项中IP地址是否与主机在同一子网:
-
计算主机的网络地址:
- IP地址:152.68.70.3
- 子网掩码:255.255.224.0(二进制:
11111111.11111111.11100000.00000000
,即前19位为网络位)。 - 按位与运算:
- 第三字节:70(二进制
01000110
) & 224(二进制11100000
) = 64(二进制01000000
)。
- 第三字节:70(二进制
- 网络地址:152.68.64.0/19。
-
验证选项的IP地址:
- 选项B(152.68.67.15):
第三字节67(二进制01000011
) & 224 = 64 → 网络地址152.68.64.0/19,属于同一子网。 - 选项C(152.68.85.220):
第三字节85(二进制01010101
) & 224 = 64 → 网络地址152.68.64.0/19,属于同一子网。 - 选项D(152.68.90.30):
第三字节90(二进制01011010
) & 224 = 64 → 网络地址152.68.64.0/19,属于同一子网。 - 选项A(152.68.62.23):
第三字节62(二进制00111110
) & 224 = 32 → 网络地址152.68.32.0/19,不属于同一子网。
- 选项B(152.68.67.15):
-
结论:
- 选项B、C、D的路由器与主机在同一子网,可直接通信;选项A需通过其他路由器中转。
A \boxed{A} A
3.对分片后的数据进行重组的是(B)
A.中间主机
B.目的主机
C.核心路由器
D.下一跳路由器
分片后的数据重组由 目的主机 完成,原因如下:
- 分片独立性:IP分片在网络中独立传输,可能经过不同路径,中间设备(如路由器)仅负责转发,不记录分片状态。
- 重组逻辑:只有目的主机具备所有分片信息(如标识符、偏移量、标志位)才能正确排序和重组原始数据报。
- RFC标准:根据IP协议规范(RFC 791),分片重组明确由目的终端执行。
答案:
B
\boxed{B}
B
4.CIDR地址块 192.168 .10 .0 / 20 所包含的IP地址范围是()
A.192.168.10.0-192.168.12.255
B.192.168.10.0-192.168.13.255
C.192.168.10.0-192.168.14.255
D.192.168.10.0-192.168.15.255
要确定CIDR地址块192.168.10.0/20的IP地址范围,需通过以下步骤:
-
子网掩码计算
- CIDR
/20
对应的子网掩码为 255.255.240.0(二进制:11111111.11111111.11110000.00000000
),即前20位为网络部分。
- CIDR
-
网络地址与广播地址计算
- IP地址:192.168.10.0
- 按位与运算(确定网络地址):
- 第三字节:
10
(二进制00001010
) &240
(二进制11110000
) =00000000
→ 0 - 网络地址:192.168.0.0/20
- 第三字节:
- 广播地址:
- 第三字节主机位全1:
0 + 15 = 15
- 广播地址:192.168.15.255
- 第三字节主机位全1:
-
IP地址范围
- 有效范围为 192.168.0.0 至 192.168.15.255。
- 题目中给出的CIDR块为 192.168.10.0/20,其实际属于 192.168.0.0/20 的子网范围,但选项中仅 D选项(192.168.10.0-192.168.15.255) 覆盖了该子网的后半部分,可能是题目设定的简化或特定场景。
结论
根据选项匹配,正确答案为:
D
\boxed{D}
D
5.一个由 25 台计算机组成的通信网络,网络中任意两台计算机之间的往返时延为 20 ms ,他们之间采用 UDP协议进行请求和响应,如果 40 ms 内未收到响应,该计算机立即重传请求,但很快网络发生崩溃,解决办法是()
A.增加超时计时器时间
B.增加路由中队列长度
C.在接收方使用滑动窗口机制防止缓冲区溢出
D.超时后重传请求时,使用二进制指数退避算法
在UDP协议中,由于缺乏拥塞控制机制,当网络中出现大量重传请求时,会迅速加剧拥塞,导致网络崩溃。关键在于重传策略的优化:
-
问题根源:
- 所有主机在固定超时时间(40ms)后立即重传,导致大量重传请求同时涌入网络,形成同步重传风暴,最终引发拥塞崩溃。
-
二进制指数退避算法的作用:
- 该算法通过动态调整重传间隔(如首次重传等待40ms,第二次80ms,第三次160ms等),使各主机的重传时间随机化,分散网络负载,避免集中爆发。
-
其他选项的局限性:
- A. 增加超时时间:仅延迟崩溃时间,无法解决同步重传问题。
- B. 增加队列长度:仅临时缓解丢包,无法减少重传量。
- C. 滑动窗口机制:UDP协议不支持,需改造协议栈,不切实际。
结论:通过退避算法分散重传时间,有效降低网络拥塞风险。
D \boxed{D} D
三,名词解释
1.BGP协议
答案:(来自计算机网络谢希仁第五版P156)
BGP边界网关协议,是不同AS的路由器之间交换路由信息的协议。BGP力求寻找一条能够到达目的网络且比较好的路由,而井非要寻找一条最佳路由。BGP采用路径向量路由选择协议。
2.DHCP协议
答案:(来自计算机网络谢希仁第五版P265)
动态主机配置协议DHCP提供了一种机制,即插即用连网,这种机制允许一台计算机加入新的网络和获取IP地址而不用手工参与。DHCP对于运行客户软件和服务软件器软件都适用。DHCP使用客户服务器方式。DHCP服务器分配给DHCP客户的IP是临时的,因此DHCP客户只能在一段有限时间内使用这个分配到的IP地址。
四,计算
1.一台路由器收到一个 1500 字节的IPv4分组,IP头部为 20 字节,如果需要将该分组转发到一个MTU为 500字节的链路上,
1)该IP分组共分成几个分片,长度分别为多少字节
2)最后一个分片的片偏移是多少字节
1) 分片数量及长度
-
原始分组结构:
- 总长度:1500 字节
- IP头部:20 字节
- 数据部分:1500 - 20 = 1480 字节
-
MTU限制:
- 目标链路 MTU = 500 字节
- 每个分片的最大数据长度:500 - 20(新IP头部)= 480 字节
- 要求:分片的数据长度必须是 8 字节的倍数,因此实际可用数据长度为 480 字节(480 ÷ 8 = 60,整数倍)。
-
分片计算:
- 分片数量:
1480 480 = 3.08 ⇒ 需要 4 个分片 \frac{1480}{480} = 3.08 \quad \Rightarrow \quad \text{需要 4 个分片} 4801480=3.08⇒需要 4 个分片 - 前 3 个分片:
- 数据长度 = 480 字节
- 总长度 = 480 + 20 = 500 字节
- 最后一个分片:
- 剩余数据长度 = 1480 - (480 × 3) = 40 字节
- 总长度 = 40 + 20 = 60 字节
- 分片数量:
分片结果:
- 分片 1:500 字节
- 分片 2:500 字节
- 分片 3:500 字节
- 分片 4:60 字节
2) 最后一个分片的片偏移
片偏移(Fragment Offset)表示分片数据起始位置相对于原始数据部分的 8 字节块数。计算步骤如下:
-
前 3 个分片的总数据长度:
480 × 3 = 1440 字节 480 \times 3 = 1440 \ \text{字节} 480×3=1440 字节 -
片偏移值:
偏移块数 = 1440 8 = 180 \text{偏移块数} = \frac{1440}{8} = 180 偏移块数=81440=180
结论:最后一个分片的片偏移为 180(以 8 字节为单位)。
最终答案
-
该IP分组共分成 4 个分片,长度分别为:
500 字节 , 500 字节 , 500 字节 , 60 字节 \boxed{500\ \text{字节}}, \boxed{500\ \text{字节}}, \boxed{500\ \text{字节}}, \boxed{60\ \text{字节}} 500 字节,500 字节,500 字节,60 字节 -
最后一个分片的片偏移是:
180 \boxed{180} 180
2.一个TCP连接使用 256 Kbps 链路,其端到端的传输时延为 128 ms ,实际吞吐量是 128 Kbps ,若忽略数据封装开销及接收方响应分组的发送时间,发送窗口大小是多少字节
答案:实际吞吐量为128Kbps,说明利用率只有 50 %
设窗口大小为 x 字节,则 x / 256 /(x / 256+128 * 2)=50 %
解得 x=8192 字节
3.客户端C和S之间建立一个TCP连接,该连接总是以 1 KB 的最大段长发送TCP段,C有足够数据发送,当拥塞窗口为 32 KB 时,收到了三个重复的ACK报文,如果接下来 4 个RTT时间内 TCP段的传输是成功的,那么在当四个RTT时间内发送的TCP段都得到ACK,拥塞窗口大小是多少?采用了怎样的拥塞机制?
软件工程
一,选择题
1.采用一样的方法名,重新写方法体的方法是(B)
A.重叠
B.重载
C.继承
D....
二、判断题
1,面向对象分析方法的常用工具是用例图(错)
三、简答题
1.软件需求是什么?共分为几个层次?
答案:一个需求是一个“要予构造”的陈述,描述了待开发产品(或项)功能上的能力,性能参数或其他性质。分为功能需求跟非功能需求,其中非功能需求又分为性能需求,外部接口设计,质量属性,设计约束。
2.软件质量保证的是什么?它的四个活动是什么?
质量保证是为项目生存周期内的软件过程和软件产品提供适当保障的过程,目的是使它们符合所规定的需求,并遵循已建立计划。包括过程实现,产品保证,过程保证,质量体系保证四个活动。
3.说明客户端/服务器,对等模式采用的三层结构是什么?
三层是表示层、业务逻辑层、数据层。表示层是为客户提供应用服务的图形界面,有助于用户理解和高效的定位应用服务,业务逻辑层位于显示层和数据层之间,专门为实现企业的业务逻辑提供了一个明确的层次,在这个层次封装了与系统关联的应用模型,并把用户表示层和数据库代码分开。这个层次提供客户应用程序和数据服务之间的联系,主要功能是执行应用策略和封装应用模式,并将封装的模式呈现给客户应用程序。数据层是三层模式中最底层,他用来定义、维护、访问和更新数据并管理和满足应用服务对数据的请求