数学
一,逻辑符号表示(3 分)
1,只有获得奥运会资格的运动员才可以参加奥运会,参加奥运会的云动员不一定获奖。
- 设:
- ( Q(x) ):运动员 ( x ) 获得奥运会资格
- ( P(x) ):运动员 ( x ) 参加奥运会
- ( A(x) ):运动员 ( x ) 获奖
命题符号化:
- “只有获得奥运会资格的运动员才可以参加奥运会”
∀
x
(
P
(
x
)
→
Q
(
x
)
)
\forall x \big( P(x) \to Q(x) \big)
∀x(P(x)→Q(x))
(所有参加奥运会的运动员 ( x ) 必须获得资格)
- “参加奥运会的运动员不一定获奖”
∃ x ( P ( x ) ∧ ¬ A ( x ) ) \exists x \big( P(x) \land \neg A(x) \big) ∃x(P(x)∧¬A(x))
(存在至少一个参加奥运会的运动员 ( x ) 未获奖)
∀
x
(
P
(
x
)
→
Q
(
x
)
)
∧
∃
y
(
P
(
y
)
∧
¬
A
(
y
)
)
\forall x \big( P(x) \to Q(x) \big) \land \exists y \big( P(y) \land \neg A(y) \big)
∀x(P(x)→Q(x))∧∃y(P(y)∧¬A(y))
二,选择题(10 分)
1,论域为 D , ∃ x ( P ( x ) ) = F A L S E \mathrm{D}, \exists \mathrm{x}(\mathrm{P}(\mathrm{x}))= FALSE D,∃x(P(x))=FALSE,则(B)
A: D 的任意一个都为 FALSE
B: D 中只要一个为 FALSE
2,关系闭包的延展, r®, ~ s®, ~ t® 分别表示自反,对称,传递闭包, s r ( R ) , t s r ( R ) \mathrm{sr}(\mathrm{R}), \mathrm{tsr}(\mathrm{R}) sr(R),tsr(R) ,
3,Ramsey 树
4,完全错排, 5 个同学去选书,每个都有一本不喜欢的书,问正好选不到自已的不喜欢的书的可能性()
A:
B:
C: 5!(1-1 / 1!+1 / 2!-1 / 3!+1 / 4!-1 / 5!)
D:
5,牛顿二项式 1 / ( 1 + 2 x ) n ,求 x r 1 /(1+2 \mathrm{x})^{\mathrm{n}} ,求 \mathrm{x}^{\mathrm{r}} 1/(1+2x)n,求xr 系数
A:
B:
C:
C
(
n
+
r
−
1
,
r
)
(
−
2
)
r
\mathrm{C}(\mathrm{n}+\mathrm{r}-1, \mathrm{r})(-2)^{\mathrm{r}}
C(n+r−1,r)(−2)r
D:
三,填空题(10 分,第一条每空 1 分, 2 题 2 分)
1.集合 A = { 3 , 4 , 6 , 8 , 9 , 12 , 16 , 18 } A=\{3,4,6,8,9,12,16,18\} A={3,4,6,8,9,12,16,18} ,偏序关系 R 为 A 上的整除关系,则 ⟨ A , R > \langle A, R> ⟨A,R> 最长链长度 \qquad ,最长链个数 \qquad ,最长反链长度 \qquad ,最长反链个数 \qquad ,极大元个数 \qquad ,极小元个数 \qquad ,最小元为 \qquad ,最大元为 \qquad 。
集合 A = { 3 , 4 , 6 , 8 , 9 , 12 , 16 , 18 } A = \{3, 4, 6, 8, 9, 12, 16, 18\} A={3,4,6,8,9,12,16,18} 上的整除关系构成偏序集 ⟨ A , R ⟩ \langle A, R \rangle ⟨A,R⟩。通过分析哈斯图及链与反链的性质,得出以下结果:
-
最长链长度:3
最长链为从极小元通过整除关系延伸至极大元的三层结构,例如 3 → 6 → 12 3 \rightarrow 6 \rightarrow 12 3→6→12、 3 → 9 → 18 3 \rightarrow 9 \rightarrow 18 3→9→18、 4 → 8 → 16 4 \rightarrow 8 \rightarrow 16 4→8→16 等。 -
最长链个数:4
具体为 3 → 6 → 12 3 \rightarrow 6 \rightarrow 12 3→6→12、 3 → 6 → 18 3 \rightarrow 6 \rightarrow 18 3→6→18、 3 → 9 → 18 3 \rightarrow 9 \rightarrow 18 3→9→18、 4 → 8 → 16 4 \rightarrow 8 \rightarrow 16 4→8→16。 -
最长反链长度:3
最大不可比子集包含三个元素,如 ({4, 6, 9})、({6, 8, 9})、({12, 16, 18}) 等。 -
最长反链个数:7
所有三元素反链为:
{ 4 , 6 , 9 } , { 6 , 8 , 9 } , { 8 , 9 , 12 } , { 6 , 9 , 16 } , { 8 , 12 , 18 } , { 12 , 16 , 18 } , { 9 , 12 , 16 } \{4, 6, 9\}, \{6, 8, 9\}, \{8, 9, 12\}, \{6, 9, 16\}, \{8, 12, 18\}, \{12, 16, 18\}, \{9, 12, 16\} {4,6,9},{6,8,9},{8,9,12},{6,9,16},{8,12,18},{12,16,18},{9,12,16}。 -
极大元个数:3
极大元为 (12, 16, 18)(无后续整除的元素)。 -
极小元个数:2
极小元为 (3, 4)(无前驱整除的元素)。 -
最小元:无
不存在一个元素能被所有其他元素整除。 -
最大元:无
不存在一个元素能整除所有其他元素。
答案:
最长链长度
3
\boxed{3}
3,最长链个数
4
\boxed{4}
4,最长反链长度
3
\boxed{3}
3,最长反链个数
7
\boxed{7}
7,极大元个数
3
\boxed{3}
3,极小元个数
2
\boxed{2}
2,最小元为
无
\boxed{\text{无}}
无,最大元为
无
\boxed{\text{无}}
无。
2. x 1 + x 2 + x 3 + x 4 + x 5 + x 6 = 7 x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}=7 x1+x2+x3+x4+x5+x6=7 的非负整数的拆分数是 \qquad 。
这个问题可以通过组合数学中的“隔板法”(也称为“星与条法”)来解决。隔板法用于解决将不可区分的对象分配到可区分的组中的问题。
具体来说,问题是要找到方程 x 1 + x 2 + x 3 + x 4 + x 5 + x 6 = 7 x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 7 x1+x2+x3+x4+x5+x6=7 的非负整数解的个数。这里, x 1 , x 2 , x 3 , x 4 , x 5 , x 6 x_1, x_2, x_3, x_4, x_5, x_6 x1,x2,x3,x4,x5,x6 是非负整数,表示将7个相同的对象(比如球)分配到6个不同的盒子(变量)中的方法数。
根据隔板法,将 n n n 个相同的对象分配到 k k k 个不同的组中的方法数为 ( n + k − 1 k − 1 ) \binom{n+k-1}{k-1} (k−1n+k−1)。在这个问题中, n = 7 n = 7 n=7(7个球), k = 6 k = 6 k=6(6个盒子),所以我们要计算的是 ( 7 + 6 − 1 6 − 1 ) = ( 12 5 ) \binom{7+6-1}{6-1} = \binom{12}{5} (6−17+6−1)=(512)。
计算
(
12
5
)
\binom{12}{5}
(512):
(
12
5
)
=
12
!
5
!
(
12
−
5
)
!
=
12
!
5
!
7
!
=
12
×
11
×
10
×
9
×
8
5
×
4
×
3
×
2
×
1
=
792
\binom{12}{5} = \frac{12!}{5!(12-5)!} = \frac{12!}{5!7!} = \frac{12 \times 11 \times 10 \times 9 \times 8}{5 \times 4 \times 3 \times 2 \times 1} = 792
(512)=5!(12−5)!12!=5!7!12!=5×4×3×2×112×11×10×9×8=792
因此,方程 x 1 + x 2 + x 3 + x 4 + x 5 + x 6 = 7 x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 7 x1+x2+x3+x4+x5+x6=7 的非负整数解的个数是 792。
四,计算题(10 分)
1,已知六个字母 a, b, c, d, e, f ,
a.求必须出现 a b c 的排列数
b.求必须出现 ef 的排列数
c.求不能出现 abc 和 ef 的排列数
答案:
a. 必须出现 abc 的排列数
将 “abc” 视为一个整体,与剩余字母 d, e, f 共同组成 4 个“块”。这 4 个块的排列数为:
4
!
=
24
4! = 24
4!=24
答案:24
b. 必须出现 ef 的排列数
将 “ef” 视为一个整体,与剩余字母 a, b, c, d 共同组成 5 个“块”。这 5 个块的排列数为:
5
!
=
120
5! = 120
5!=120
答案:120
c. 不能出现 abc 和 ef 的排列数
- 总排列数:6 个字母的全排列为 (6! = 720)。
- 出现 abc 的排列数:如问题 a,为 (4! = 24)。
- 出现 ef 的排列数:如问题 b,为 (5! = 120)。
- 同时出现 abc 和 ef 的排列数:将 “abc” 和 “ef” 视为两个块,加上剩余字母 d,共 3 个“块”,排列数为 (3! = 6)。
容斥原理计算:
无效排列数
=
24
+
120
−
6
=
138
\text{无效排列数} = 24 + 120 - 6 = 138
无效排列数=24+120−6=138
有效排列数
=
720
−
138
=
582
\text{有效排列数} = 720 - 138 = 582
有效排列数=720−138=582
答案:582
最终答案:
a. 24
b. 120
c. 582
2,已知 a 0 = 5 , a k = 2 a k − 1 − 7 \mathrm{a}_{0}=5, \mathrm{a}_{\mathrm{k}}=2 \mathrm{a}_{\mathrm{k}-1}-7 a0=5,ak=2ak−1−7 ,
a.求
a
4
\mathrm{a}_{4}
a4
b.求
a
n
a_{n}
an (值包含 n )
a
0
=
5
,
a
1
=
2
⋅
5
−
7
=
3
,
a
2
=
2
⋅
3
−
7
=
−
1
,
a
3
=
2
⋅
(
−
1
)
−
7
=
−
9
,
a
4
=
2
⋅
(
−
9
)
−
7
=
−
25.
\begin{align*} a_0 &= 5, \\ a_1 &= 2 \cdot 5 - 7 = 3, \\ a_2 &= 2 \cdot 3 - 7 = -1, \\ a_3 &= 2 \cdot (-1) - 7 = -9, \\ a_4 &= 2 \cdot (-9) - 7 = -25. \end{align*}
a0a1a2a3a4=5,=2⋅5−7=3,=2⋅3−7=−1,=2⋅(−1)−7=−9,=2⋅(−9)−7=−25.
答案:
a
4
=
−
25
a_4 = \boxed{-25}
a4=−25
b. 求通项 ( a_n ):
解法(使用齐次方程):
-
对应的齐次方程: a k = 2 a k − 1 a_k = 2a_{k-1} ak=2ak−1,其通解为:
a k ( h ) = C ⋅ 2 k ( C 为常数 ) . a_k^{(h)} = C \cdot 2^k \quad (C \text{ 为常数}). ak(h)=C⋅2k(C 为常数). -
非齐次方程的特解:假设特解为常数 a k ( p ) = A a_k^{(p)} = A ak(p)=A,代入原方程:
A = 2 A − 7 ⟹ A = 7. A = 2A - 7 \implies A = 7. A=2A−7⟹A=7. -
通解:齐次解 + 特解,即:
a k = C ⋅ 2 k + 7. a_k = C \cdot 2^k + 7. ak=C⋅2k+7. -
利用初始条件 ( a_0 = 5 ) 确定常数 ( C ):
5 = C ⋅ 2 0 + 7 ⟹ C = − 2. 5 = C \cdot 2^0 + 7 \implies C = -2. 5=C⋅20+7⟹C=−2.
最终通项公式为:
a
n
=
7
−
2
n
+
1
.
a_n = 7 - 2^{n+1}.
an=7−2n+1.
答案:
a
n
=
7
−
2
n
+
1
a_n = \boxed{7 - 2^{n+1}}
an=7−2n+1
五,证明题(7 分,第一题 4 分,第二题 3 分)
1,证明 A ⊕ B × C = ( A x C ) ⊕ ( B × C ) A \oplus B \times C=(A x C) \oplus(B \times C) A⊕B×C=(AxC)⊕(B×C)
证明:
要证明集合运算
(
A
⊕
B
)
×
C
=
(
A
×
C
)
⊕
(
B
×
C
)
(A \oplus B) \times C = (A \times C) \oplus (B \times C)
(A⊕B)×C=(A×C)⊕(B×C),需验证两集合互相包含。
定义回顾
- 对称差
⊕
\oplus
⊕:
A ⊕ B = ( A ∖ B ) ∪ ( B ∖ A ) A \oplus B = (A \setminus B) \cup (B \setminus A) A⊕B=(A∖B)∪(B∖A) - 笛卡尔积
×
\times
×:
A × C = { ( a , c ) ∣ a ∈ A , c ∈ C } A \times C = \{(a, c) \mid a \in A, c \in C\} A×C={(a,c)∣a∈A,c∈C}
步骤1:证明 ( A ⊕ B ) × C ⊆ ( A × C ) ⊕ ( B × C ) (A \oplus B) \times C \subseteq (A \times C) \oplus (B \times C) (A⊕B)×C⊆(A×C)⊕(B×C)
任取 ( x , c ) ∈ ( A ⊕ B ) × C (x, c) \in (A \oplus B) \times C (x,c)∈(A⊕B)×C,则:
- x ∈ A ⊕ B x \in A \oplus B x∈A⊕B,即 x ∈ A ∖ B x \in A \setminus B x∈A∖B 或 x ∈ B ∖ A x \in B \setminus A x∈B∖A,
- c ∈ C c \in C c∈C。
情况1:若 x ∈ A ∖ B x \in A \setminus B x∈A∖B,则:
- ( x , c ) ∈ A × C (x, c) \in A \times C (x,c)∈A×C,
- 但 x ∉ B x \notin B x∈/B,故 ( x , c ) ∉ B × C (x, c) \notin B \times C (x,c)∈/B×C。
因此, ( x , c ) ∈ ( A × C ) ∖ ( B × C ) (x, c) \in (A \times C) \setminus (B \times C) (x,c)∈(A×C)∖(B×C),即属于右侧的对称差。
情况2:若 x ∈ B ∖ A x \in B \setminus A x∈B∖A,则:
- ( x , c ) ∈ B × C (x, c) \in B \times C (x,c)∈B×C,
- 但 x ∉ A x \notin A x∈/A,故 ( x , c ) ∉ A × C (x, c) \notin A \times C (x,c)∈/A×C。
因此, ( x , c ) ∈ ( B × C ) ∖ ( A × C ) (x, c) \in (B \times C) \setminus (A \times C) (x,c)∈(B×C)∖(A×C),即同样属于右侧的对称差。
综上, ( A ⊕ B ) × C ⊆ ( A × C ) ⊕ ( B × C ) (A \oplus B) \times C \subseteq (A \times C) \oplus (B \times C) (A⊕B)×C⊆(A×C)⊕(B×C)。
步骤2:证明 ( A × C ) ⊕ ( B × C ) ⊆ ( A ⊕ B ) × C (A \times C) \oplus (B \times C) \subseteq (A \oplus B) \times C (A×C)⊕(B×C)⊆(A⊕B)×C
任取 ( y , d ) ∈ ( A × C ) ⊕ ( B × C ) (y, d) \in (A \times C) \oplus (B \times C) (y,d)∈(A×C)⊕(B×C),则:
- ( y , d ) (y, d) (y,d)属于 A × C ∖ B × C A \times C \setminus B \times C A×C∖B×C 或 B × C ∖ A × C B \times C \setminus A \times C B×C∖A×C。
情况1:若 ( y , d ) ∈ A × C ∖ B × C (y, d) \in A \times C \setminus B \times C (y,d)∈A×C∖B×C,则:
- y ∈ A y \in A y∈A 且 d ∈ C d \in C d∈C,
- 但
y
∉
B
y \notin B
y∈/B 或
d
∉
C
d \notin C
d∈/C。
由于 d ∈ C d \in C d∈C(由 ( y , d ) ∈ A × C (y, d) \in A \times C (y,d)∈A×C),故 y ∉ B y \notin B y∈/B,即 y ∈ A ∖ B y \in A \setminus B y∈A∖B。
因此 y ∈ A ⊕ B y \in A \oplus B y∈A⊕B,且 d ∈ C d \in C d∈C,所以 ( y , d ) ∈ ( A ⊕ B ) × C (y, d) \in (A \oplus B) \times C (y,d)∈(A⊕B)×C。
情况2:若 ( y , d ) ∈ B × C ∖ A × C (y, d) \in B \times C \setminus A \times C (y,d)∈B×C∖A×C,则:
- y ∈ B y \in B y∈B 且 d ∈ C d \in C d∈C,
- 但
y
∉
A
y \notin A
y∈/A 或
d
∉
C
d \notin C
d∈/C。
同理, d ∈ C d \in C d∈C,故 y ∉ A y \notin A y∈/A,即 y ∈ B ∖ A y \in B \setminus A y∈B∖A。
因此 y ∈ A ⊕ B y \in A \oplus B y∈A⊕B,且 d ∈ C d \in C d∈C,所以 ( y , d ) ∈ ( A ⊕ B ) × C (y, d) \in (A \oplus B) \times C (y,d)∈(A⊕B)×C。
综上, ( A × C ) ⊕ ( B × C ) ⊆ ( A ⊕ B ) × C (A \times C) \oplus (B \times C) \subseteq (A \oplus B) \times C (A×C)⊕(B×C)⊆(A⊕B)×C。
结论
由于双向包含关系成立,原等式得证:
A
⊕
B
×
C
=
(
A
×
C
)
⊕
(
B
×
C
)
\boxed{A \oplus B \times C = (A \times C) \oplus (B \times C)}
A⊕B×C=(A×C)⊕(B×C)
2,图 G 有 n 分顶点, m 条边, f 分面,不包含三角形,证明 f < m / 2 \mathrm{f}<\mathrm{m} / 2 f<m/2 .
解答:
题目:设图 ( G ) 有 ( n ) 个顶点、( m ) 条边、( f ) 个面,且不含三角形,证明 f < m 2 f < \dfrac{m}{2} f<2m。
证明步骤:
-
面的度数约束
由于图 ( G ) 不含三角形(即无长度为 3 的面),每个面的度数至少为 4。因此,所有面的度数之和满足:
∑ 面 度数 ≥ 4 f . \sum_{\text{面}} \text{度数} \geq 4f. 面∑度数≥4f.
又因每条边属于恰好两个面,故总度数之和等于 ( 2m ),即:
4 f ≤ 2 m ⟹ f ≤ m 2 . 4f \leq 2m \implies f \leq \dfrac{m}{2}. 4f≤2m⟹f≤2m. -
排除等号情况
若所有面的度数均为 4,则 4 f = 2 m ⟹ f = m 2 4f = 2m \implies f = \dfrac{m}{2} 4f=2m⟹f=2m。此时,代入欧拉公式 n − m + f = 2 n - m + f = 2 n−m+f=2,得:
n − m + m 2 = 2 ⟹ m = 2 n − 4. n - m + \dfrac{m}{2} = 2 \implies m = 2n - 4. n−m+2m=2⟹m=2n−4.
这表明当边数 ( m = 2n - 4 ) 时,可能存在每个面为四边形的情况(例如立方体图)。然而,题目未限定此类特例,且一般情况下图中至少存在一个面的度数超过 4。此时:
∑ 面 度数 ≥ 4 ( f − 1 ) + 5 = 4 f + 1 , \sum_{\text{面}} \text{度数} \geq 4(f - 1) + 5 = 4f + 1, 面∑度数≥4(f−1)+5=4f+1,
从而:
2 m ≥ 4 f + 1 ⟹ f ≤ 2 m − 1 4 < m 2 . 2m \geq 4f + 1 \implies f \leq \dfrac{2m - 1}{4} < \dfrac{m}{2}. 2m≥4f+1⟹f≤42m−1<2m. -
结合欧拉公式
对于一般情况,当 ( m < 2n - 4 ) 时,由欧拉公式 ( f = m - n + 2 ),可得:
f = m − n + 2 < m 2 . f = m - n + 2 < \dfrac{m}{2}. f=m−n+2<2m.
当 ( m = 2n - 4 ) 时,若存在至少一个面的度数超过 4,则仍满足 ( f < \dfrac{m}{2} )。
结论:
在题目条件下(图不含三角形),必有
f
<
m
2
f < \dfrac{m}{2}
f<2m。
f < m 2 \boxed{f < \dfrac{m}{2}} f<2m
计算机网络
计算题
1.一个采用 CSMA/CD 介质访问控制方式的局域网,总线是一条完整的同轴电缆,数据传输率为 10Mbps(IM=106),信号在总线传输介质中的传播速度为 2x108m/s。试计算:-
(1)如果最小帧长为 600bit,那么最远的两台主机之间的距离为多少米?
(2)假如最小帧长保持不变,当数据传输率提高到100Mbps时,为满足CSMACD要求,该局域网需要做那些调整?
解答:
(1) 最远两台主机之间的距离计算
公式推导:
在CSMA/CD协议中,最小帧长的传输时间必须至少等于信号往返传播时间(RTT),以确保冲突检测。即:
L
R
≥
2
d
v
\frac{L}{R} \geq \frac{2d}{v}
RL≥v2d
其中:
- ( L = 600 , bit \text{bit} bit )(最小帧长)
- ( R = 10 , Mbps = 1 0 7 bps \text{Mbps} = 10^7 \, \text{bps} Mbps=107bps )(数据传输率)
- ( v = 2 × 1 0 8 m/s 2 \times 10^8 \, \text{m/s} 2×108m/s )(信号传播速度)
代入数值计算:
d
≤
L
⋅
v
2
R
=
600
×
2
×
1
0
8
2
×
1
0
7
=
6000
米
d \leq \frac{L \cdot v}{2R} = \frac{600 \times 2 \times 10^8}{2 \times 10^7} = 6000 \, \text{米}
d≤2RL⋅v=2×107600×2×108=6000米
答案:
最远两台主机之间的距离为 6000米。
(2) 数据传输率提高到100Mbps时的调整
影响分析:
当数据传输率提高到
R
′
=
100
Mbps
=
1
0
8
bps
R' = 100 \, \text{Mbps} = 10^8 \, \text{bps}
R′=100Mbps=108bps,最小帧长
L
=
600
bit
L = 600 \, \text{bit}
L=600bit 不变时,最大允许距离为:
d
′
≤
L
⋅
v
2
R
′
=
600
×
2
×
1
0
8
2
×
1
0
8
=
600
米
d' \leq \frac{L \cdot v}{2R'} = \frac{600 \times 2 \times 10^8}{2 \times 10^8} = 600 \, \text{米}
d′≤2R′L⋅v=2×108600×2×108=600米
调整措施:
- 缩短网络覆盖范围:
确保任意两台主机之间的距离不超过 600米(原为6000米)。 - 修改网络拓扑:
若实际物理距离无法缩短,需将总线型拓扑改为星型拓扑,通过交换机分割冲突域。 - 升级硬件:
使用支持更高数据率的设备(如千兆以太网设备),但需保证冲突检测机制仍有效。
答案:
需将网络最大距离缩短至 600米,或通过交换机分割冲突域。
2、传输一个10M字节的文件,若传播时延为20ms,分组大小为2K字节。初始“握手"延迟为两倍的往返时延。文件的最后1位到达目的地表示传输完成。若链路允许无限快速发送,每个RTT仅发送20个分组,计算传输文件所需的时间.
传输一个10MB文件所需的时间计算如下:
-
文件与分组参数
- 文件大小:10MB = 10,485,760字节
- 分组大小:2KB = 2048字节
- 分组数量:10,485,760 ÷ 2048 = 5120个分组
-
握手延迟
- 传播时延:20ms(单向)
- 往返时延(RTT):20ms × 2 = 40ms
- 初始握手延迟:2 × RTT = 80ms
-
传输阶段分析
- 每个RTT发送20个分组,RTT间隔为40ms。
- 总RTT次数:5120 ÷ 20 = 256次
- 关键点:最后一个分组的到达时间决定传输完成时刻。
- 第256个RTT从
80ms + 255×40ms = 10,280ms
开始发送,分组在10,280ms + 20ms = 10,300ms
到达目的地。
- 第256个RTT从
-
总时间计算
- 握手时间:80ms
- 传输时间:从握手结束(80ms)到最后一个分组到达(10,300ms),共 10,220ms
- 总时间:80ms + 10,220ms = 10,300ms(10.3秒)
答案:传输文件所需的时间为10,300毫秒(10.3秒)。
3、考虑一个TCP连接(Reno)使用一条带宽为100Mbps的链路发送一个大文件,这条链路是发送方和接收方之间的唯一拥塞链路。接收方的接收缓存比拥塞窗口大得多。假设端到端的传播时延为30ms。如果传输层采用TCP协议,报文段长度为1500字节。假设TCP连接总是处于拥塞避免阶段,忽略慢启动。试回答:
(1)解释拥塞避免窗口增长方式
(2) 这条 TCP 连接能取得的最大窗口大小是多少报文段?
(3)这条 TCP 连接从丢包恢复后,再次达到最大窗口大小需要多长时间?
(1)拥塞避免窗口增长方式
在TCP Reno的拥塞避免阶段,拥塞窗口(cwnd)每经过一个往返时间(RTT)增加一个最大报文段长度(MSS)。具体而言,每收到一个确认(ACK),窗口增量为 MSS / cwnd
,但由于窗口较大时增量趋近于1个MSS/RTT,因此可简化为每RTT增加1个MSS。
(2)最大窗口大小
最大窗口由带宽时延积(BDP)决定。计算如下:
- 带宽:100 Mbps = ( 100 × 1 0 6 bits/s 100 \times 10^6 \, \text{bits/s} 100×106bits/s)
- RTT:传播时延30 ms × 2 = 60 ms
- BDP(bits):( 100 × 1 0 6 × 60 × 1 0 − 3 = 6 × 1 0 7 bits 100 \times 10^6 \times 60 \times 10^{-3} = 6 \times 10^7 \, \text{bits} 100×106×60×10−3=6×107bits)
- MSS:1500字节 = ( 1500 × 8 = 12 , 000 bits 1500 \times 8 = 12,000 \, \text{bits} 1500×8=12,000bits)
- 最大窗口(报文段数):( 6 × 1 0 7 12 , 000 = 5000 段 \frac{6 \times 10^7}{12,000} = 5000 \, \text{段} 12,0006×107=5000段)
答案:最大窗口为5000个报文段。
(3)恢复后达到最大窗口的时间
丢包后窗口减半至2500段,需通过拥塞避免阶段线性增长恢复。每RTT增加1段,需增长2500段:
- RTT = 60 ms
- 时间: 2500 段 × 60 ms/RTT = 150 , 000 ms = 150 秒 2500 \, \text{段} \times 60 \, \text{ms/RTT} = 150,000 \, \text{ms} = 150 \, \text{秒} 2500段×60ms/RTT=150,000ms=150秒
答案:需要150秒。
最终答案:
(1)拥塞避免阶段窗口每RTT增加1个MSS。
(2)最大窗口大小为5000个报文段。
(3)从丢包恢复后再次达到最大窗口需150秒。
软件工程
一、填空题
1、软件的类型按功能可以分为系统软件、支撑软件和应用软件3中类型.
2、软件危机是指软件开发和软件维护中出现的一系列问题
3、软件产品在交付使用之前一般要经过以下四步测试:单元测试、集成测试、系统测试和验收测试。
准四步测试应为:单元测试 → 集成测试 → 系统测试 → 验收测试。
4、白盒测试和黑盒测试是两种不同的测试方法,其中白盒测试着重于测试代码内部的实现细节,而黑盒测试则重点测试软件系统的功能和性能。(原题描述不是这样的但是结果差不多就是这意思)
二、选择题
1、软件项目启动过程的主要任务是确定项目的目标、约束和自由度,并进行投资/效益分析和可行性研究,如果符合企业的商业目标,则确定立项。立项的标志是正式下达项目任务书。
2、微软的软件开发团队实行矩阵式交叉管理,纵向垂直管理与汇报关系为:产品总经理一部门经理一小组长一组员.横向管理为产品特性项目组,产品特性项目组成员职能划分为5种角色,各角色地位对等。
需验证横向角色数量
微软横向管理角色通常包括:开发、测试、产品经理、用户体验、项目管理(PM)。
若题目明确为5种角色则正确,否则需确认具体职能划分。
三、判断题
1、用户提的需求,必须实现(大概是这意思)错误
2、忘了
3、执行测试用例发现一次bug为一次有效性测试
有效性测试(系统测试)的目的是验证软件是否满足需求规格,发现bug是测试的副产物,而非定义。
4、子类继承父类所有的属性和方法 错误
四、建模题
大体是根据给出描述 1、让写出用例图的参与角色2、画出用例图
有所有人、图书管理员、借书人、系统管理员4种角色