POJ1569--Myacm Triangles

题目大意:求三角形内不包含其他点的最大面积三角形


分析:枚举三个顶点,然后遍历其他点是否在这个三角形内,并且面积是否比之前的最大面积还大。题目中给出来了三点求面积的公式。判断点是否在三角形内有两种方法。

一、这个点与三角形任意两个顶点形成的共三个三角形的面积之和,等于当前三角形的面积,则说明在三角形内。

代码:

#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;

struct P {
    int x, y;
}p[20];
int n;

double area(int a, int b, int c) {
    return abs(0.5*((p[c].y-p[a].y)*(p[b].x-p[a].x)-(p[b].y-p[a].y)*(p[c].x-p[a].x)));
}

bool ok(int a, int b, int c, double s) {
    for(int i = 0; i < n; i++)
        if(i != a && i != b && i != c)
            if(area(i, a, b)+area(i, b, c)+area(i, c, a) == s)
                return false;
    return true;
}

int main() {
    while(scanf("%d", &n) && n != 0) {
        char ch[2];
        for(int i = 0; i < n; i++)
            scanf("%s%d%d", ch, &p[i].x, &p[i].y);
        double ans = 0;
        int a, b, c;
        for(int i = 0; i < n-2; i++)
            for(int j = i+1; j < n-1; j++)
                for(int k = j+1; k < n; k++) {
                    double s = area(i, j, k);
                    if(ok(i, j, k, s) && s > ans) {
                        ans = s;
                        a = i, b = j, c = k;
                    }
                }
        printf("%c%c%c\n", 'A'+a, 'A'+b, 'A'+c);
    }
    return 0;
}



二、以这个点为起点,三角形三个顶点为终点形成的三个向量A,B,C,A叉乘B,B叉乘C,C叉乘A同号的话,则说明在三角形内。

代码:

#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>

struct P {
    int x, y;
    P(){};
    P(int x, int y):x(x), y(y) {}
}p[20];
int n;

P operator -(const P & p1, const P & p2) {
    return P(p1.x-p2.x, p1.y-p2.y);
}

int operator ^(const P & p1, const P & p2) {
    return p1.x*p2.y-p1.y*p2.x;
}

double area(int a, int b, int c) {
    return abs(0.5*((p[c].y-p[a].y)*(p[b].x-p[a].x)-(p[b].y-p[a].y)*(p[c].x-p[a].x)));
}

bool ok(int a, int b, int c) {
    for(int i = 0; i < n; i++) {
        if(i != a && i != b && i != c) {
            P v1 = p[a]-p[i], v2 = p[b]-p[i], v3 = p[c]-p[i];
            //一定要有等号,等号表示这个点在某条边上
            if(((v1^v2) >= 0 && (v2^v3) >= 0 && (v3^v1) >= 0) || ((v1^v2) <= 0 && (v2^v3) <= 0 && (v3^v1) <= 0)) {
                return false;
            }
        }
    }
    return true;
}

int main() {
    while(scanf("%d", &n) && n != 0) {
        char ch[2];
        for(int i = 0; i < n; i++)
            scanf("%s%d%d", ch, &p[i].x, &p[i].y);
        double ans = 0;
        int a, b, c;
        for(int i = 0; i < n-2; i++)
            for(int j = i+1; j < n-1; j++)
                for(int k = j+1; k < n; k++) {
                    double s = area(i, j, k);
                    if(ok(i, j, k) && s > ans) {
                        ans = s;
                        a = i, b = j, c = k;
                    }
                }
        printf("%c%c%c\n", 'A'+a, 'A'+b, 'A'+c);
    }

    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值