统计区间内的样本数画直方图

本文介绍了如何利用Python的matplotlib.pyplot模块(plt.hist)和seaborn库(sns.displot)来绘制直方图,展示统计区间内的样本数量。通过这两种方法,可以清晰地呈现数据分布,并且sns.displot还能自动拟合概率密度函数曲线。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

统计区间内的样本数画直方图

一、使用plt.hist

import numpy as np
import matplotlib.mlab as mlab
import matplotlib.pyplot as plt
from scipy.stats import norm

# 产生数据
mu = 100  # mean of distribution
sigma = 15  # standard deviation of distribution
x = mu + sigma * np.random.randn(10000)

num_bins = 50 # 区间个数
n, bins
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值