**前言:**今天主要的任务的CT图像的处理以及在faster rcnn中训练总结的数据集,但是效果不是很好!
一.CT图像处理(将dicom格式转换成jpg格式)
1.单张图片的转换
import SimpleITK as sitk
import numpy as np
import cv2
def convert_from_dicom_to_jpg(img,low_window,high_window,save_path):
lungwin = np.array([low_window*1.,high_window*1.])
newimg = (img-lungwin[0])/(lungwin[1]-lungwin[0]) #归一化
newimg = (newimg*255).astype('uint8') #将像素值扩展到[0,255]
cv2.imwrite(save_path, newimg, [int(cv2.IMWRITE_JPEG_QUALITY), 100])
if __name__ == '__main__':
# 下面是将对应的dicom格式的图片转成jpg
dcm_image_path = '/DICOM_image/lung001.dcm' #读取dicom文件
output_jpg_path = 'JPG_image/lung001.jpg'
ds_array = sitk.ReadImage(dcm_image_path) #读取dicom文件的相关信息
img_array = sitk.GetArrayFromImage(ds_array) #获取array
# SimpleITK读取的图像数据的坐标顺序为zyx,即从多少张切片到单张切片的宽和高,此处我们读取单张,因此img_array的shape
#类似于 (1,height,width)的形式
shape = img_array.shape
img_array = np.reshape(img_array, (shape[1], shape[2])) #获取array中的height和width
high = np.max(img_array)
low = np.min(img_array)
convert_from_dicom_to_jpg(img_array, low, high, output_jpg_path) #调用函数,转换成jpg文件并保存到对应的路径
print('FINISHED')
2.多张图片批量转换
import SimpleITK as sitk
import numpy as np
import cv2 import os
import time from PIL
import Image`
count = 1
path = "/Users/pingguogongyongji1/Desktop/test"
filename = os.listdir(path)
print filename
for i in filename:
document = os.path.join(path,i)
outputpath = "/Users/pingguo/Desktop/output/"
countname = str(count)
countfullname = countname + '.jpg'
output_jpg_path = os.path.join(outputpath,countfullname)
def convert_from_dicom_to_jpg(img,low_window,high_window,save_path):
lungwin = np.array([low_window*1.,high_window*1.])
newimg = (img-lungwin[0])/(lungwin[1]-lungwin[0])
newimg = (newimg*255).astype('uint8')
cv2.imwrite(save_path, newimg, [int(cv2.IMWRITE_JPEG_QUALITY), 100])
if __name__ == '__main__':
ds_array = sitk.ReadImage(document)
img_array = sitk.GetArrayFromImage(ds_array)
shape = img_array.shape#name.shape
img_array = np.reshape(img_array, (shape[1], shape[2]))
high = np.max(img_array)
low = np.min(img_array)
convert_from_dicom_to_jpg(img_array, low, high, output_jpg_path)
print('FINISHED')
count = count + 1
二.数据运行结果
将转换成jpg格式的CT图像直接作为输入在faster rcnn中训练,并没有得到想象中结节能被标注的结果,结果只是将CT图像作为一个box标注了出来(苦笑),应该是我没有进行图像预处理,没有将CT图像转换成VOC2007格式的数据,只是简单的输入了jpg图像,所以还在学习图像处理的方式。
**总结:
**原本以为将转换后的CT图像直接送入faster rcnn就可以标注出结节的位置,但是结果证明自己的想法太过简单,一系列的图像处理过程还需要继续学习和完善,才能得到最终想要的结果,所以明天的计划是学习如何将CT图像制作成faster rcnn网络图像的格式,如果顺利的话就利用总结的数据集进行训练!