Faster RCNN--Second

**前言:**今天主要的任务的CT图像的处理以及在faster rcnn中训练总结的数据集,但是效果不是很好!
一.CT图像处理(将dicom格式转换成jpg格式)

1.单张图片的转换

import SimpleITK as sitk
import numpy as np
import cv2

def convert_from_dicom_to_jpg(img,low_window,high_window,save_path):
    lungwin = np.array([low_window*1.,high_window*1.])
    newimg = (img-lungwin[0])/(lungwin[1]-lungwin[0])    #归一化
    newimg = (newimg*255).astype('uint8')                #将像素值扩展到[0,255]
    cv2.imwrite(save_path, newimg, [int(cv2.IMWRITE_JPEG_QUALITY), 100])

if __name__ == '__main__':

    # 下面是将对应的dicom格式的图片转成jpg
    dcm_image_path = '/DICOM_image/lung001.dcm'       #读取dicom文件
    output_jpg_path = 'JPG_image/lung001.jpg'
    ds_array = sitk.ReadImage(dcm_image_path)         #读取dicom文件的相关信息
    img_array = sitk.GetArrayFromImage(ds_array)      #获取array
    # SimpleITK读取的图像数据的坐标顺序为zyx,即从多少张切片到单张切片的宽和高,此处我们读取单张,因此img_array的shape
    #类似于 (1,height,width)的形式
    shape = img_array.shape
    img_array = np.reshape(img_array, (shape[1], shape[2]))  #获取array中的height和width
    high = np.max(img_array)
    low = np.min(img_array)
    convert_from_dicom_to_jpg(img_array, low, high, output_jpg_path)   #调用函数,转换成jpg文件并保存到对应的路径
    print('FINISHED')

2.多张图片批量转换

 import SimpleITK as sitk 
 import numpy as np 
 import cv2 import os
 import time from PIL 
 import Image`
 count = 1
path = "/Users/pingguogongyongji1/Desktop/test"
filename = os.listdir(path)
print filename
    for i in filename:
        document = os.path.join(path,i)
        outputpath = "/Users/pingguo/Desktop/output/"
        countname = str(count)
        countfullname = countname + '.jpg'
        output_jpg_path = os.path.join(outputpath,countfullname)
        
        def convert_from_dicom_to_jpg(img,low_window,high_window,save_path):
            lungwin = np.array([low_window*1.,high_window*1.])
            newimg = (img-lungwin[0])/(lungwin[1]-lungwin[0]) 
            newimg = (newimg*255).astype('uint8')
            cv2.imwrite(save_path, newimg, [int(cv2.IMWRITE_JPEG_QUALITY), 100])
                
        if __name__ == '__main__':

            ds_array = sitk.ReadImage(document)   
            img_array = sitk.GetArrayFromImage(ds_array)   
       
            shape = img_array.shape#name.shape
            img_array = np.reshape(img_array, (shape[1], shape[2])) 
            high = np.max(img_array)
            low = np.min(img_array)
            convert_from_dicom_to_jpg(img_array, low, high, output_jpg_path)  
            print('FINISHED')

        count = count + 1

二.数据运行结果

将转换成jpg格式的CT图像直接作为输入在faster rcnn中训练,并没有得到想象中结节能被标注的结果,结果只是将CT图像作为一个box标注了出来(苦笑),应该是我没有进行图像预处理,没有将CT图像转换成VOC2007格式的数据,只是简单的输入了jpg图像,所以还在学习图像处理的方式。

**总结:

**原本以为将转换后的CT图像直接送入faster rcnn就可以标注出结节的位置,但是结果证明自己的想法太过简单,一系列的图像处理过程还需要继续学习和完善,才能得到最终想要的结果,所以明天的计划是学习如何将CT图像制作成faster rcnn网络图像的格式,如果顺利的话就利用总结的数据集进行训练!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值