Graph Convolutional Matrix Completion,GC-MC

本文首发于公众号:code路漫漫,欢迎关注
在这里插入图片描述
一篇17年的文章,图推荐里面常见的baseline

Motivation

两种类型的推荐系统

  1. content based:从用户和物品的特征入手
  2. 协同过滤:从交互历史入手

本文的idea是把协同过滤技术应用在图上
用户物品的交互历史可以自然而然的表示成二部图上的链接,图上的结点分别是用户和物品。转换为图后,预测评分任务就变为预测结点之间的链接。

Contribution

提出了GC-MC框架(a graph-based auto-encoder framework for matrix completion),在图上卷积,在六个数据集上达到了SOTA的效果
在这里插入图片描述

Solution

看上图可以知道,GCN技术的几个问题

  1. 如何更有效地生成用户和物品的表征
  2. side information 如何提高model效果
  3. encoder和decoder的实现细节

下面一一介绍

encoder

使用交互物品的特征

用户和物品的处理方式相同,接下来只介绍生成用户表征的处理方式
在这里插入图片描述
encoder可以写成 Z = f ( X , A ) Z=f(X,A) Z=f(X,A)的形式,将 N X D NXD NXD维的特征矩阵 X X X和图邻接矩阵 A A A作为输入,得到 N X E NXE NXE维的embedding矩阵 Z Z Z
前面说的encoder可以生成用户和物品的表示,那么有公式 [ U , V ] = f ( X , A ) [U,V] =f(X,A) [U,V]=f(X,A),其中U是用户的表示,V是物品的表征

考虑到评分类型R可能由多个类型组成,我们对每个类型的评分单独抽取出来做一个矩阵,那么 Z Z Z的表示形式变为
[ U , V ] = f ( X , M 1 , . . . , M r ) [U,V] = f(X,M_1,...,M_r) [U,V]=f(X,M1,...,Mr),这里 M r M_r Mr是用户i评分r的交互矩阵,交互过的值为1,没交互过的值为0

这也是论文的一个创新点,之前的encoder直接把用户u的交互矩阵M传进去,而这里先把M按照评分数量拆分成多个0-1矩阵,然后再传入

用户可以被它交互过的物品表示
在这里插入图片描述
这里j表示物品j,i是用户i,c是常量,xj是物品j的feature,Wr是特定的评分矩阵
当我们计算出u之后,使用公式2计算用户i的中间输出(也就是dense layer的输出) h i h_i hi
在这里插入图片描述
最后传给公式3就能得到用户的最终表示 u i u_i ui
在这里插入图片描述

公式3是encoder的雏形,这里只用了物品的feature,稍后我们还会看到它的改进形式

引入边信息

side information可以用来增强用户的表示,但是当边信息本身含有的信息量不足的时候,直接将其和用户特征一起输入到网络中会导致模型性能下降
在论文中,side information使用单独的通道处理(separate processing channel)
考虑用户i的表示生成
在这里插入图片描述
其中 u i = σ ( W h i ) u_i = \sigma(Wh_i) ui=σ(Whi)部分等同于公式3, x i f x_i^f xif是用户i本身的特征, b b b代表bias
那么最终的用户表征由两部分组成

  1. 交互物品的feature
  2. 本身的feature,这里称为边信息

至此encoder的表示如下:
在这里插入图片描述

decoder

decoder的作用是接受用户、物品的表征用于生成重构矩阵,然后把重构矩阵和真实的结果矩阵比较计算Loss,使用梯度下降训练整个model
在这里插入图片描述

在这里插入图片描述在这里插入图片描述

这里decoder计算方法就是公式4和公式5所述

训练方法

在这里插入图片描述

权重分配

这一块论文讲得不是很清楚

之前提到,论文把不同类型的评分拆分成单独的矩阵处理,然而并不是所有用户和物品都拥有相同数量的评分。这会导致某些参数的优化次数非常少
对于encoder的权重计算方法,使用ordinal weight sharing策略
在这里插入图片描述
T s T_s Ts是什么论文里没说

对于decoder的权重计算方法,使用basis weight sharing策略
在这里插入图片描述


模型的整体框架
在这里插入图片描述

Evaluation

数据集
在这里插入图片描述
score:
在这里插入图片描述
在这里插入图片描述

使用边信息的效果
在这里插入图片描述
在这里插入图片描述

Summarization

本文在encoder和decoder上进行改进

  1. 对评分矩阵进行拆分
  2. 使用单独通道处理边信息(只使用交互历史是协同过滤思想,论文中还引入和物品、用户本身的feature,这被称为边信息)
  3. 使用特殊的权重计算方法

论文的code:https://github.com/riannevdberg/gc-mc

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值