协同推荐/协同过滤(collaborative filtering)和 协同适应方法(co-adaptation approach)

协同推荐/协同过滤(collaborative filtering)

  它最早源自电子商务,之后应用越来越广,在很多不同的领域都有协同推荐算法的相关应用,例如医疗等。
  简单来说是利用某兴趣相投、拥有共同经验之群体的喜好来推荐用户感兴趣的信息,个人通过合作的机制给予信息相当程度的回应(如评分)并记录下来以达到过滤的目的进而帮助别人筛选信息,回应不一定局限于特别感兴趣的,特别不感兴趣信息的纪录也相当重要。

分类

  协同过滤又可分为评比(rating)或者群体过滤(social filtering)。

基于用户的协同过滤算法和基于物品的协同过滤算法

  “基于用户”就是以用户为中心的算法,这种算法强调把和你有相似爱好的其他用户的物品推荐给你,而“基于物品”的算法则强调把和你喜欢物品的相似物品推荐给你。
  总体来说,都是推荐物品给你,一个推荐的桥梁是用户,另一个是物品。
  例如:如果物品比较恒定,比如淘宝网,假如商品信息在一段时间内变化不大,那就可以提前将这些物品的相似度算出保存下来,选择Top5等等,不用每次都进行大量的计算。
  其中,相似度衡量标准包括:欧氏距离算法、余弦距离算法、Jaccard距离算法、皮尔逊距离算法。


协同适应方法(co-adaptation approach);协同演化;演化策略

  寻找好的模型(也即训练)最终等同于优化——事实就是如此!但是……优化的目标有时难以确定。监督学习中,一个典型场景是图像下采样(down-sampling),在这种情况下,很难定义一个标量的量,让这个量与人类从特定的下采样算法中感知“perceptual loss”的方式完全一致。类似的,超分辨率和图像合成也很困难,因为我们很难将“优点/好”作为最大化的目标。想象一下,写一个函数,判断一张图像“逼真(photoreal)”的程度!实际上,关于如何衡量生成模型(用于图像,音频)的质量,争论一直在激化。
  近年来,解决这个问题最流行的技术是一种协同适应方法(co-adaptation approach),这种方法将最优化问题转换为求解两个非平稳分布之间的平衡点,而这些非平稳分布是协同演化的(in tandem)[3]。用一个直观的比喻来解释为什么这样做是“自然的”,可以想一想掠食者物种和被捕猎的物种之间的生态进化过程。起初,掠食者变聪明了,所以可以有效地捕获猎物。然后,猎物也变得更聪明,从而逃避捕猎者。这样,物种协同进化,最终的结果是两个物种都变得更加聪明。
  生成对抗网络也按照类似的原理工作,通过这种方法,避开了明确定义感知损失目标(perceptual loss objectives)。同样,强化学习中的自我对弈(competitive self-play)也运用这个原则来学习大量丰富的行为动作。虽然优化目标现在已经被隐含地指定,但它仍然是一个优化问题,机器学习从业者可以重新使用熟悉的工具,如深度神经网络和SGD。
  演化策略通常将优化视为一个模拟的过程(optimization-as-a-simulation)。用户在模型总体(a population of models)上指定一个动态系统,并且在模拟的每个时间步长,根据动态系统的规则更新这个总体。模型可能会也可能不会相互影响。模拟进行下去,希望系统的动力学最终能够诱导这个总体汇聚成“好的模型”。
  

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值