力扣题目系列:322. 零钱兑换

刷题系列博客链接:机试题目

目录

题目及示例

我的题解

递归

备忘录递归

动态规划(迭代)

分析题目数学模型


题目及示例

给定不同面额的硬币 coins 和一个总金额 amount。编写一个函数来计算可以凑成总金额所需的最少的硬币个数。如果没有任何一种硬币组合能组成总金额,返回 -1。 

示例 1:输入: coins = [1, 2, 5], amount = 11     输出: 3       解释: 11 = 5 + 5 + 1
示例 2:输入: coins = [2], amount = 3        输出: -1
说明:你可以认为每种硬币的数量是无限的。

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/coin-change
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

我的题解

//动态规划求解,自底向上
class Solution {
    public int coinChange(int[] coins, int amount) {

        int[] dp = new int[amount+1]; //初始化dp表,最大只能为amount+1
                                      //dp[i] = x 表示,当目标金额为 i 时,至少需要 x 枚硬币

        for(int i=0; i<amount+1; i++) { //从dp[0]迭代,一直算到dp[amount],即是所求答案

            dp[i] = i == 0 ? 0 : amount+1; //dp[0]为0,其余为amount+1,即所有的dp[i]一开始都是无穷大

            for(int coin : coins) //在dp表的每个位置,对每种硬币面值组成数目都进行比较

                if(i >= coin) //题目给的币值数组是从小到大的,比如1,3,5
                    
                    dp[i] = Math.min(dp[i-coin] + 1, dp[i]); //当前能凑成i元的coin元硬币的数目
        }
    
        return dp[amount] == amount+1 ? -1 : dp[amount]; //返回无解或解
    }
}

递归

 动态规划问题的一般形式是求最值,核心问题是穷举(把所有可行的答案穷举出来,然后在其中找最值)。

动态规划的穷举存在「重叠子问题」,如果暴力穷举的话效率会极其低下,所以需要「备忘录」或者「DP table」来优化穷举过程,避免不必要的计算。

动态规划问题一定会具备「最优子结构」,才能通过子问题的最值得到原问题的最值。

虽然动态规划的核心思想就是穷举求最值,但是问题千变万化,穷举所有可行解其实并不是一件容易的事,只有列出正确的「状态转移方程」才能正确地穷举。

//斐波那契数列的数学形式就是递归的,这样写代码虽然简洁易懂,但是十分低效,时间复杂度为 O(2^n)
int fib(int N) {
    if (N == 1 || N == 2) return 1;
    return fib(N - 1) + fib(N - 2);
}

PS:但凡遇到需要递归的问题,最好都画出递归树,这对你分析算法的复杂度,寻找算法低效的原因都有巨大帮助。

观察递归树,很明显发现了算法低效的原因:存在大量重复计算。这就是动态规划问题的第一个性质:重叠子问题。

备忘录递归

即然耗时的原因是重复计算,那么我们可以造一个「备忘录」,每次算出某个子问题的答案后别急着返回,先记到「备忘录」里再返回;每次遇到一个子问题先去「备忘录」里查一查,如果发现之前已经解决过这个问题了,直接把答案拿出来用,不要再耗时去计算了。一般使用一个数组充当这个「备忘录」,当然你也可以使用哈希表(字典),思想都是一样的。

//斐波那契,带备忘录的递归解法,时间复杂度是 O(n)
int fib(int N) {
    if (N < 1) 
        return 0;
    
    vector<int> memo(N + 1, 0); // 备忘录全初始化为 0
    
    return helper(memo, N); // 初始化最简情况
}
 
int helper(vector<int>& memo, int n) {
    
    if (n == 1 || n == 2) // base case 
        return 1;
    
    if (memo[n] != 0) // 查询得知已经计算过
        return memo[n]; //直接返回
    
    memo[n] = helper(memo, n - 1) + helper(memo, n - 2);

    return memo[n];
}

实际上,带「备忘录」的递归算法,把一棵存在巨量冗余的递归树通过「剪枝」,改造成了一幅不存在冗余的递归图,极大减少了子问题(即递归图中节点)的个数。

带备忘录的递归解法的效率已经和迭代的动态规划解法一样了。

//独立出来DP table
int fib(int N) {
    vector<int> dp(N + 1, 0);
    // base case
    dp[1] = dp[2] = 1;
    for (int i = 3; i <= N; i++)
        dp[i] = dp[i - 1] + dp[i - 2];
    return dp[N];
}

动态规划(迭代)

动态规划问题最困难的就是写出状态转移方程,即这个暴力解,优化方法无非是用备忘录或者 DP table。

//根据斐波那契数列的状态转移方程,当前状态只和之前的两个状态有关,
//其实并不需要那么长的一个 DP table 来存储所有的状态,只要想办法存储之前的两个状态就行了。
//所以,可以进一步优化,把空间复杂度降为 O(1)。
int fib(int n) {
    if (n == 2 || n == 1) 
        return 1;
    int prev = 1, curr = 1;
    for (int i = 3; i <= n; i++) {
        int sum = prev + curr;
        prev = curr;
        curr = sum;
    }
    return curr;
}

分析题目数学模型

1、先确定「状态」,也就是原问题和子问题中变化的变量。由于硬币数量无限,所以唯一的状态就是目标金额 amount。

2、然后确定 dp 函数的定义:当前的目标金额是 n,至少需要 dp(n) 个硬币凑出该金额。

3、然后确定「选择」并择优,也就是对于每个状态,可以做出什么选择改变当前状态(进入下一个状态即下一个选择)。具体到这个问题,无论当前的目标金额是多少,选择就是从面额列表 coins 中选择一个硬币,然后目标金额就会减少:

# 伪码框架
def coinChange(coins: List[int], amount: int):
    # 定义:要凑出金额 n,至少要 dp(n) 个硬币
    def dp(n):
        # 做选择,选择需要硬币最少的那个结果
        for coin in coins:
            res = min(res, 1 + dp(n - coin))
        return res
    # 我们要求的问题是 dp(amount)
    return dp(amount)

4、最后明确 base case,显然目标金额为 0 时,所需硬币数量为 0;当目标金额小于 0 时,无解,返回 -1:

def coinChange(coins: List[int], amount: int):

    def dp(n):
        # base case
        if n == 0: return 0
        if n < 0: return -1
        # 求最小值,所以初始化为正无穷
        res = float('INF')
        for coin in coins:
            subproblem = dp(n - coin)
            # 子问题无解,跳过
            if subproblem == -1: continue
            res = min(res, 1 + subproblem)

        return res if res != float('INF') else -1
    
    return dp(amount)

接下来需要消除一下重叠子问题,只需要稍加修改,就可以通过备忘录消除子问题:

def coinChange(coins: List[int], amount: int):
    # 备忘录
    memo = dict()
    def dp(n):
        # 查备忘录,避免重复计算
        if n in memo: return memo[n]

        if n == 0: return 0
        if n < 0: return -1
        res = float('INF')
        for coin in coins:
            subproblem = dp(n - coin)
            if subproblem == -1: continue
            res = min(res, 1 + subproblem)
        
        # 记入备忘录
        memo[n] = res if res != float('INF') else -1
        return memo[n]
    
    return dp(amount)

很显然「备忘录」大大减小了子问题数目,完全消除了子问题的冗余,所以子问题总数不会超过金额数 n,即子问题数目为 O(n)。处理一个子问题的时间不变,仍是 O(k),所以总的时间复杂度是 O(kn)。

当然,我们也可以自底向上使用 dp table 来消除重叠子问题,dp 数组的定义和刚才 dp 函数类似,定义也是一样的:dp[i] = x 表示,当目标金额为 i 时,至少需要 x 枚硬币。

int coinChange(vector<int>& coins, int amount) {
    // 数组大小为 amount + 1,初始值也为 amount + 1
    vector<int> dp(amount + 1, amount + 1);
    // base case
    dp[0] = 0;
    for (int i = 0; i < dp.size(); i++) {
        // 内层 for 在求所有子问题 + 1 的最小值
        for (int coin : coins) {
            // 子问题无解,跳过
            if (i - coin < 0) continue;
            dp[i] = min(dp[i], 1 + dp[i - coin]);
        }
    }
    return (dp[amount] == amount + 1) ? -1 : dp[amount];
}

PS:因为凑成 amount 金额的硬币数最多只可能等于 amount(全用 1 元面值的硬币),所以初始化为 amount + 1 就相当于初始化为正无穷,便于后续取最小值。

计算机解决问题其实没有任何奇技淫巧,它唯一的解决办法就是穷举,穷举所有可能性。算法设计无非就是先思考“如何穷举”,然后再追求“如何聪明地穷举”。

列出动态转移方程,就是在解决“如何穷举”的问题。之所以说它难,一是因为很多穷举需要递归实现,二是因为有的问题本身的解空间复杂,不那么容易穷举完整。

备忘录、DP table 就是在追求“如何聪明地穷举”。用空间换时间的思路,是降低时间复杂度的不二法门。

作者:labuladong
链接:https://leetcode-cn.com/problems/coin-change/solution/dong-tai-gui-hua-tao-lu-xiang-jie-by-wei-lai-bu-ke/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值