[模板]乘法逆元

定义

乘法逆元是一个十分有用的东西。
给定 q,x x1y(mod q)
就是说求 xy=1(mod q) y 的最小值

意义

mod p意义下
xy=x×y1
可以由此取整

求法

费马小定理

yqy(mod q) q 为质数)

求解

我们可以通过费马小定理,得:
yq11(mod q)
yq21y=y1(mod q)
所以:
y1yq2(mod q)

线性递推

f[i]=(pp/i)f[i mod p]

int n,p,f[3000010];
int main()
{
    n=read();
    p=read();
    printf("%d\n",f[1]=1);
    fr(i,2,n)
        printf("%d\n",f[i]=(ll)(p-p/i)*f[p%i]%p);
    rt 0;
}

练手题

Luogu P3811
需要快速幂
注:
程序中 power(i,p2,p)=ip2 mod p

int n,p;
int main()
{
    n=read();
    p=read();
    fr(i,1,n)
        printf("%d\n",power(i,p-2,p));
    rt 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值