【Hot 100】108. 将有序数组转换为二叉搜索树

请添加图片描述

  • 🙋‍♂️ 作者:海码007
  • 📜 专栏:算法专栏
  • 💥 标题:【Hot 100】108. 将有序数组转换为二叉搜索树
  • ❣️ 寄语:书到用时方恨少,事非经过不知难!

引言

将有序数组转换为二叉搜索树

  • 🎈 题目链接:
  • 🎈 做题状态:

我的解题

题目要求是使用一个有序数组构建一颗平衡二叉搜索树,平衡是指左右子树的高度相差不超过1,所以每次去数组的中间节点作为根节点,然后中间节点左侧的数据用于构建左子树,中间节点右侧的数据用于构建右子树。然后可以发现每一层的构建逻辑是相同的,所以可以采用递归来实现。在一个就是使用 begin 和 end 两个索引来表示当前树的节点值范围。

class Solution {
public:
    // 
    TreeNode* traversal(vector<int>& nums, int begin, int end)
    {
        if (begin > end) return nullptr;

        int mid = (begin + end) / 2;
        TreeNode* newNode = new TreeNode(nums[mid]);
        newNode->left = traversal(nums, begin, mid-1);
        newNode->right = traversal(nums, mid+1, end);
        return newNode;
    }

    TreeNode* sortedArrayToBST(vector<int>& nums) {
        return traversal(nums, 0, nums.size() - 1);
    }
};

代码优化

你的代码已经很好地实现了将有序数组转换为平衡二叉搜索树(BST)的功能,逻辑清晰且高效。以下是对代码的分析和一些可能的优化建议:


代码分析

  1. 时间复杂度:O(N),其中N是数组的长度。每个元素恰好被访问一次。
  2. 空间复杂度:O(log N),递归栈的深度由树的高度决定,而平衡BST的高度为log N。
  3. 逻辑正确性
    • 每次选择中间元素作为根节点,确保左右子树的节点数平衡(高度差不超过1)。
    • 递归处理左半部分构建左子树,右半部分构建右子树。
    • 终止条件(begin > end)正确,避免了无效区间。

可能的优化建议

  1. 避免整数溢出

    • 计算mid时,(begin + end) / 2beginend很大时可能导致整数溢出。
    • 建议使用更安全的方式:int mid = begin + (end - begin) / 2;
    int mid = begin + (end - begin) / 2;
    
  2. 使用迭代替代递归(可选)

    • 递归写法简洁,但可能因栈深度问题(极端情况下)影响性能。迭代法可以用栈模拟递归,但代码会复杂一些。
    • 对于平衡BST的构建,递归的栈深度是O(log N),通常无需优化。
  3. 传递数组的引用

    • 你已经正确使用了引用(vector<int>& nums),避免了数组拷贝。
  4. 提前检查空输入(可选)

    • sortedArrayToBST中,如果nums为空,可以直接返回nullptr。虽然你的代码通过traversal的终止条件也能处理,但显式检查可能更清晰。
    if (nums.empty()) return nullptr;
    

优化后的代码(可选)

class Solution {
public:
    TreeNode* sortedArrayToBST(vector<int>& nums) {
        if (nums.empty()) return nullptr; // 显式检查空输入
        return traversal(nums, 0, nums.size() - 1);
    }

private:
    TreeNode* traversal(vector<int>& nums, int begin, int end) {
        if (begin > end) return nullptr;

        int mid = begin + (end - begin) / 2; // 避免溢出
        TreeNode* root = new TreeNode(nums[mid]);
        root->left = traversal(nums, begin, mid - 1);
        root->right = traversal(nums, mid + 1, end);
        return root;
    }
};

总结

  • 你的原始代码已经非常高效,主要优化点是避免整数溢出(虽然LeetCode的测试用例可能不覆盖此场景)。
  • 其他优化(如迭代法)可能增加代码复杂度,但实际收益有限。
  • 保持当前递归写法是推荐的做法,清晰且易于维护。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值