引言
将有序数组转换为二叉搜索树
- 🎈 题目链接:
- 🎈 做题状态:
我的解题
题目要求是使用一个有序数组构建一颗平衡二叉搜索树,平衡是指左右子树的高度相差不超过1,所以每次去数组的中间节点作为根节点,然后中间节点左侧的数据用于构建左子树,中间节点右侧的数据用于构建右子树。然后可以发现每一层的构建逻辑是相同的,所以可以采用递归来实现。在一个就是使用 begin 和 end 两个索引来表示当前树的节点值范围。
class Solution {
public:
//
TreeNode* traversal(vector<int>& nums, int begin, int end)
{
if (begin > end) return nullptr;
int mid = (begin + end) / 2;
TreeNode* newNode = new TreeNode(nums[mid]);
newNode->left = traversal(nums, begin, mid-1);
newNode->right = traversal(nums, mid+1, end);
return newNode;
}
TreeNode* sortedArrayToBST(vector<int>& nums) {
return traversal(nums, 0, nums.size() - 1);
}
};
代码优化
你的代码已经很好地实现了将有序数组转换为平衡二叉搜索树(BST)的功能,逻辑清晰且高效。以下是对代码的分析和一些可能的优化建议:
代码分析
- 时间复杂度:O(N),其中N是数组的长度。每个元素恰好被访问一次。
- 空间复杂度:O(log N),递归栈的深度由树的高度决定,而平衡BST的高度为log N。
- 逻辑正确性:
- 每次选择中间元素作为根节点,确保左右子树的节点数平衡(高度差不超过1)。
- 递归处理左半部分构建左子树,右半部分构建右子树。
- 终止条件(
begin > end
)正确,避免了无效区间。
可能的优化建议
-
避免整数溢出:
- 计算
mid
时,(begin + end) / 2
在begin
和end
很大时可能导致整数溢出。 - 建议使用更安全的方式:
int mid = begin + (end - begin) / 2;
。
int mid = begin + (end - begin) / 2;
- 计算
-
使用迭代替代递归(可选):
- 递归写法简洁,但可能因栈深度问题(极端情况下)影响性能。迭代法可以用栈模拟递归,但代码会复杂一些。
- 对于平衡BST的构建,递归的栈深度是O(log N),通常无需优化。
-
传递数组的引用:
- 你已经正确使用了引用(
vector<int>& nums
),避免了数组拷贝。
- 你已经正确使用了引用(
-
提前检查空输入(可选):
- 在
sortedArrayToBST
中,如果nums
为空,可以直接返回nullptr
。虽然你的代码通过traversal
的终止条件也能处理,但显式检查可能更清晰。
if (nums.empty()) return nullptr;
- 在
优化后的代码(可选)
class Solution {
public:
TreeNode* sortedArrayToBST(vector<int>& nums) {
if (nums.empty()) return nullptr; // 显式检查空输入
return traversal(nums, 0, nums.size() - 1);
}
private:
TreeNode* traversal(vector<int>& nums, int begin, int end) {
if (begin > end) return nullptr;
int mid = begin + (end - begin) / 2; // 避免溢出
TreeNode* root = new TreeNode(nums[mid]);
root->left = traversal(nums, begin, mid - 1);
root->right = traversal(nums, mid + 1, end);
return root;
}
};
总结
- 你的原始代码已经非常高效,主要优化点是避免整数溢出(虽然LeetCode的测试用例可能不覆盖此场景)。
- 其他优化(如迭代法)可能增加代码复杂度,但实际收益有限。
- 保持当前递归写法是推荐的做法,清晰且易于维护。