引言
路径总和 III
- 🎈 题目链接:
- 🎈 做题状态:
我的解题
这道题目看着有点难,需要找出所有的路径,遍历路径的话可以采用递归+回溯来实现,将每一种路径添加到路径集合中。
代码看着确实比较绕,有几个关键的地方,递归函数传递的是 targetSum
,然后在递归左右子树时传入的是 targetSum - root->val
这个优化了很多逻辑,可以注意。还有在 pathSum
的代码里面根节点调用的是paths函数,而左右子树是递归调用本身。
class Solution {
public:
int paths(TreeNode* root, int targetSum)
{
if (!root) return 0;
// 判断当前path是否满足要求
int count = 0;
if (root->val == targetSum) count++;
count += paths(root->left, targetSum - root->val);
count += paths(root->right, targetSum - root->val);
return count;
}
int pathSum(TreeNode* root, int targetSum) {
if (!root)
{
return 0;
}
int res = paths(root, targetSum);
res += pathSum(root->left, targetSum);
res += pathSum(root->right, targetSum);
return res;
}
};
路径总和 III - 解题思路与代码解析
问题理解
题目要求我们找出二叉树中所有路径,这些路径上的节点值之和等于给定的目标值。这里的路径不需要从根节点开始,也不需要在叶子节点结束,但必须是从父节点指向子节点的方向。
解题思路
这道题的关键在于如何高效地遍历所有可能的路径,并计算它们的和是否等于目标值。我的解题思路采用了递归和回溯的方法:
-
双重递归:使用两个递归函数协同工作
pathSum
函数:遍历树的所有节点,将每个节点作为路径的起点paths
函数:从给定节点出发,计算所有向下延伸的路径和是否等于目标值
-
递归分解:
- 对于每个节点,我们有两个选择:
- 包含当前节点在路径中,继续向下寻找剩余的目标和(
targetSum - node.val
) - 不包含当前节点,从子节点重新开始计算路径
- 包含当前节点在路径中,继续向下寻找剩余的目标和(
- 对于每个节点,我们有两个选择:
代码解析
class Solution {
public:
// 计算以当前节点为起点的所有满足条件的路径数量
int paths(TreeNode* root, int targetSum) {
if (!root) return 0;
int count = 0;
// 检查当前节点本身是否满足条件
if (root->val == targetSum) count++;
// 递归检查左右子树,注意更新剩余的目标和
count += paths(root->left, targetSum - root->val);
count += paths(root->right, targetSum - root->val);
return count;
}
// 主函数,遍历树的所有节点作为路径起点
int pathSum(TreeNode* root, int targetSum) {
if (!root) {
return 0;
}
// 计算以当前节点为起点的路径数
int res = paths(root, targetSum);
// 递归计算左右子树的所有可能路径
res += pathSum(root->left, targetSum);
res += pathSum(root->right, targetSum);
return res;
}
};
复杂度分析
- 时间复杂度:O(n²),最坏情况下(如链表形式的树),我们需要对每个节点都进行一次遍历
- 空间复杂度:O(h),递归调用栈的深度取决于树的高度
优化思路
虽然这个解法能够正确解决问题,但对于大规模树来说效率可能不够高。可以考虑使用前缀和的方法来优化时间复杂度到O(n),通过哈希表记录路径上的前缀和,从而快速计算是否存在满足条件的子路径。