【Hot 100】437. 路径总和 III

请添加图片描述

  • 🙋‍♂️ 作者:海码007
  • 📜 专栏:算法专栏
  • 💥 标题:【Hot 100】437. 路径总和 III
  • ❣️ 寄语:书到用时方恨少,事非经过不知难!

引言

路径总和 III

  • 🎈 题目链接:
  • 🎈 做题状态:

我的解题

这道题目看着有点难,需要找出所有的路径,遍历路径的话可以采用递归+回溯来实现,将每一种路径添加到路径集合中。

代码看着确实比较绕,有几个关键的地方,递归函数传递的是 targetSum,然后在递归左右子树时传入的是 targetSum - root->val 这个优化了很多逻辑,可以注意。还有在 pathSum 的代码里面根节点调用的是paths函数,而左右子树是递归调用本身。


class Solution {
public:
    int paths(TreeNode* root, int targetSum)
    {
        if (!root) return 0;

        // 判断当前path是否满足要求
        int count = 0;
        if (root->val == targetSum) count++;

        count += paths(root->left, targetSum - root->val);
        count += paths(root->right, targetSum - root->val);

        return count;
    }

    int pathSum(TreeNode* root, int targetSum) {
        if (!root) 
        {
            return 0;
        }
        
        int res = paths(root, targetSum);
        res += pathSum(root->left, targetSum);
        res += pathSum(root->right, targetSum);

        return res;
    }
};

路径总和 III - 解题思路与代码解析

问题理解

题目要求我们找出二叉树中所有路径,这些路径上的节点值之和等于给定的目标值。这里的路径不需要从根节点开始,也不需要在叶子节点结束,但必须是从父节点指向子节点的方向。

解题思路

这道题的关键在于如何高效地遍历所有可能的路径,并计算它们的和是否等于目标值。我的解题思路采用了递归和回溯的方法:

  1. 双重递归:使用两个递归函数协同工作

    • pathSum 函数:遍历树的所有节点,将每个节点作为路径的起点
    • paths 函数:从给定节点出发,计算所有向下延伸的路径和是否等于目标值
  2. 递归分解

    • 对于每个节点,我们有两个选择:
      • 包含当前节点在路径中,继续向下寻找剩余的目标和(targetSum - node.val
      • 不包含当前节点,从子节点重新开始计算路径

代码解析

class Solution {
public:
    // 计算以当前节点为起点的所有满足条件的路径数量
    int paths(TreeNode* root, int targetSum) {
        if (!root) return 0;

        int count = 0;
        // 检查当前节点本身是否满足条件
        if (root->val == targetSum) count++;
        
        // 递归检查左右子树,注意更新剩余的目标和
        count += paths(root->left, targetSum - root->val);
        count += paths(root->right, targetSum - root->val);

        return count;
    }

    // 主函数,遍历树的所有节点作为路径起点
    int pathSum(TreeNode* root, int targetSum) {
        if (!root) {
            return 0;
        }
        
        // 计算以当前节点为起点的路径数
        int res = paths(root, targetSum);
        // 递归计算左右子树的所有可能路径
        res += pathSum(root->left, targetSum);
        res += pathSum(root->right, targetSum);

        return res;
    }
};

复杂度分析

  • 时间复杂度:O(n²),最坏情况下(如链表形式的树),我们需要对每个节点都进行一次遍历
  • 空间复杂度:O(h),递归调用栈的深度取决于树的高度

优化思路

虽然这个解法能够正确解决问题,但对于大规模树来说效率可能不够高。可以考虑使用前缀和的方法来优化时间复杂度到O(n),通过哈希表记录路径上的前缀和,从而快速计算是否存在满足条件的子路径。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值