深度学习作为人工智能的核心技术,已渗透到日常生活的多个领域。以下是几个典型应用场景及技术实现原理:
1. 计算机视觉
- 人脸识别与身份验证
通过卷积神经网络(CNN)提取面部特征,例如 f ( x ) = ReLU ( W ∗ x + b ) f(x)=\text{ReLU}(W \ast x + b) f(x)=ReLU(W∗x+b),用于手机解锁、支付验证等场景。引用文献中的3D地标编码网络(如 p 2 p_2 p2模块)可提升头部姿态估计精度。 - 医学影像分析
利用分割网络(如U-Net)定位病灶区域。例如,训练数据需满足真实分布以提升泛化性,避免过拟合。
2. 自然语言处理(NLP)
- 智能客服与翻译
基于Transformer的模型(如BERT)实现语义理解。通过在线学习和小批量SGD优化,模型可实时更新以适应用户语言习惯。