- 博客(19)
- 资源 (34)
- 收藏
- 关注
原创 深度学习在金融欺诈检测中的应用案例与技术方法
自动特征学习深度学习通过多层神经网络自动提取交易数据中的非线性特征,例如时间序列模式(如tnt_ntn时刻的交易金额、地理位置变化)、用户行为画像(如viv_ivi表示设备指纹特征)等,避免传统方法依赖人工设计规则的局限性。卷积神经网络(CNN)将交易记录转化为二维矩阵(如时间×\times×交易类型),通过卷积层捕捉局部关联性。例如检测信用卡交易中“短时间内多笔小额消费后出现大额异常转账”的模式。循环神经网络(RNN/LSTM)
2025-04-21 10:44:13
526
原创 深度学习在医疗影像诊断应用
Faster R-CNN框架实现微钙化点检测,敏感度提升35%。特征金字塔网络(FPN)提取多尺度特征,区域建议网络(RPN)生成候选区域。架构实现胸部X光片二分类(肺炎/正常),准确率达92%。输入图像经标准化后通过残差块提取多层特征,最终由全连接层输出概率分布。模型,在BraTS数据集上获得Dice系数0.89。的域适应方法,将小鼠视网膜OCT图像转换为人类等效图像,数据增强效果提升模型泛化能力20%。分别来自不同模态的特征向量。各医院本地模型参数加权聚合。
2025-04-21 10:39:00
873
原创 深度学习在自动驾驶与交通管理中的应用研究
基于时空图神经网络(STGNN),整合历史流量数据和天气因素,预测未来15分钟至数小时的交通状态。例如,使用Gated Recurrent Unit(GRU)建模时间依赖性,准确率可达90%以上。通过卷积神经网络(CNN)处理摄像头、激光雷达等多模态传感器数据,实现目标检测(如车辆、行人、交通标志)和语义分割。结合激光雷达、GPS和IMU数据,利用深度学习模型(如LSTM或Transformer)实现时空特征融合,提升定位精度。例如,通过端到端网络将点云与图像数据对齐,解决复杂天气下的定位漂移问题。
2025-04-21 10:35:47
823
原创 深度学习在虚拟助手与智能家居中的应用案例与技术实现
Py∣x∏t1TPyt∣x)AttentionQKVsoftmaxdkQKTVHfusionσWv⋅HvWs⋅Hsb)atmaxt0∑TγtEsavedstat−λCswitchat))EsavedCswitch。
2025-04-18 18:15:10
483
原创 讲解机器学习中的 K-均值聚类算法及其优缺点。
因此,在应用K-均值聚类算法时,需要根据具体的数据集特点和应用需求来选择合适的K值,并注意处理异常值和噪声的影响。如果数据集包含复杂的簇结构或者簇的形状不规则,可以考虑使用其他聚类算法如层次聚类或密度聚类。K-均值聚类算法是一种常见的无监督学习算法,用于将数据集划分为K个簇,每个簇包含具有相似特征的数据点。1. 需要提前确定簇的个数K,且对于不同的初始质心选取可能得到不同的结果。3. 计算每个簇的新质心,即将簇中所有数据点的均值作为新的质心。2. 将每个数据点分配到距离其最近的质心所在的簇。
2025-04-18 17:52:36
211
原创 介绍 TensorFlow 的基本概念和使用场景。
2. 计算图(Computational Graph):TensorFlow 使用计算图来表示计算的流程,图中的节点表示操作,边表示张量。用户需要首先构建计算图,然后执行该图来进行计算。1. 机器学习模型训练和部署:TensorFlow 提供了丰富的工具和接口,可以帮助用户构建各种类型的机器学习模型,如神经网络、决策树等,并支持在不同平台上部署模型进行推断。1. 张量(Tensor):在 TensorFlow 中,数据通过张量的形式表示,张量是多维数组的一种泛化形式,可以是标量、向量或矩阵等。
2025-04-18 17:51:21
279
原创 举例说明计算机视觉(CV)技术的优势和挑战。
5. 伦理和法律问题:计算机视觉技术的广泛应用也引发了一系列伦理和法律问题,如算法的不公平性、数据的倾向性等,需要建立相应的准则和规范来规范使用。2. 数据多样性:现实世界中的图像和视频数据具有丰富的多样性,涉及不同的场景、光照条件、尺度等变化,因此需要具备良好的泛化能力来适应各种情况。1. 复杂性:计算机视觉任务需要处理大量的图像、视频和数据,并使用复杂的算法和模型来进行分析和处理,需要高度的计算资源和算法优化。1. 高效性:计算机视觉可以在短时间内处理大量的图像和视频数据,并提供即时的分析和结果输出。
2024-12-20 10:01:23
218
原创 介绍 TensorFlow 的基本概念和使用场景。
TensorFlow的核心是一个多维数组对象(张量),它在计算图(计算操作的有向图)中流动,并执行各种数值计算。1. 机器学习和深度学习:TensorFlow提供了丰富的机器学习和深度学习算法库,可以用于构建各种模型,如神经网络、卷积神经网络、循环神经网络等。总之,TensorFlow是一个强大而灵活的机器学习框架,可以适用于各种不同的应用场景。在会话中,可以将计算图的操作转化为具体的数值计算,并进行训练和推理。1. 张量(Tensor):多维数组对象,是TensorFlow中操作的主要输入和输出。
2024-12-19 20:00:00
143
原创 举例说明计算机视觉(CV)技术的优势和挑战。
它需要大量的高质量数据来训练和调整算法和模型,并且需要能够适应不同场景和环境的数据。2. 精准性:CV技术能够以高精度检测和识别物体、人脸、文字等,而且不受疲劳和注意力分散的影响。1. 高效性:CV技术能够以极快的速度处理大量的图像和视频数据。1. 复杂性:CV技术需要处理大量的图像和视频数据,而且需要理解和解释这些数据。3. 隐私和安全性:CV技术涉及到大量的个人和敏感信息,如人脸、身份证等。计算机视觉(CV)技术是一种让计算机能够“看”和理解图像或视频的技术,它具有许多优势和挑战。
2024-12-19 15:44:13
319
原创 讲解机器学习中的 K-均值聚类算法及其优缺点。
2. 使用改进的K-均值聚类算法,如K-means++算法,它能够更好地选择初始聚类中心。3. 使用其他聚类算法,如层次聚类、DBSCAN等,根据具体问题的特点选择合适的算法。2. 对于每个数据点,计算其与每个聚类中心的距离,并将其分配到与之最近的聚类中心。1. 尝试不同的初始聚类中心选择方法,如随机选择多组初始聚类中心,选择最优的结果。3. 对于每个聚类,计算其内部数据点的平均值,将该均值作为新的聚类中心。3. 对初始聚类中心的选择较为敏感,不同的初始化可能导致不同的聚类结果。
2024-12-19 15:43:41
182
原创 解释区块链技术的应用场景和优势。
通过区块链,可以记录和验证物流过程中的每一个节点,确保产品的真实性和可追溯性。4. 选举和投票系统:区块链技术可以提供安全、透明、可追溯的选举和投票系统。通过区块链,可以确保选举过程的公正性和数据的安全性,防止选举舞弊和数据篡改。1. 去中心化:区块链技术没有中央机构控制,交易和信息都由网络中的节点共同验证和记录。2. 透明性:区块链中的交易和信息都是公开可见的,任何人都可以查看和验证。总之,区块链技术可以应用于各种领域,提供了高度的安全性、透明性和效率,为现有的经济和社会模式带来了革新。
2024-12-19 15:40:10
241
原创 讲解人工智能在现代科技中的应用和未来发展趋势。
1. 语音识别和自然语言处理:通过人工智能技术,计算机能够理解和识别人类的语音指令,实现智能助理和智能家居设备的控制,例如Siri、Alexa和Google Assistant。未来,深度学习技术有望继续发展,提高模型的准确性和效率。3. 数据挖掘和机器学习:人工智能可以处理和分析大量的数据,发现隐藏的模式和关联关系,从而帮助企业做出更准确的决策,例如推荐系统、金融风险评估和市场预测。总之,人工智能在现代科技中的应用广泛且不断发展,未来仍有许多新的领域和技术将会涌现,帮助人类解决更多的问题和挑战。
2024-12-19 15:39:25
527
原创 介绍 Apache Spark 的基本概念和在大数据分析中的应用。
1. 弹性分布式数据集(Resilient Distributed Dataset, RDD):Spark的核心数据抽象,是一个可并行操作的、可分区的数据集合。5. Spark SQL:Spark SQL是Spark用于结构化数据处理的模块,可以使用SQL语法查询和处理数据。总之,Apache Spark是一个功能强大的大数据处理框架,可以用于批处理、实时分析、机器学习和图计算等应用场景。1. 批处理:Spark可以处理大规模的批量数据,它可以将数据分为多个分区进行并行处理,从而提高计算性能。
2024-12-19 09:55:38
215
原创 介绍 Docker 的基本概念和优势,以及在应用程序开发中的实际应用。
总之,Docker提供了一种方便和可靠的方式来打包、部署和管理应用程序,提高开发和部署效率,促进应用程序的可移植性和可扩展性。1. 容器化:Docker使用容器技术来封装和隔离应用程序及其依赖项,使其可以在不同的环境中运行,而不会受到环境差异的影响。1. 快速部署和开发环境复制:开发人员可以使用Docker容器快速部署应用程序,并复制整个开发环境,确保开发环境的一致性。4. 简化配置:通过Dockerfile,可以将应用程序的配置和依赖项定义为代码,实现自动化的部署和更新。
2024-12-19 09:55:04
177
原创 举例说明自然语言处理(NLP)技术。
语音助手,如Apple的Siri和亚马逊的Alexa,使用NLP技术来理解用户的语音指令并提供相应的回应。1. 机器翻译:NLP技术可以将一种语言的文本自动翻译成另一种语言。例如,Google翻译和微软翻译系统使用NLP技术实现了多种语言之间的自动翻译。例如,从新闻文章中提取关键信息,如事件的时间、地点和涉及的人物。6. 文本分类:NLP技术可以将文本分成不同的类别。这些只是NLP技术的一些例子,实际上,NLP还有很多其他的应用,如问答系统、信息检索和文档自动摘要等。
2024-12-19 09:54:32
192
原创 解释 RESTful API,以及如何使用它构建 web 应用程序。
RESTful API(Representational State Transfer)是一种设计和开发网络服务的架构风格,它基于HTTP协议,使用统一的资源标识符(URL)作为资源的唯一标识,并通过不同的HTTP动词(如GET、POST、PUT、DELETE)进行对资源的操作。例如,使用GET动词获取资源的信息,使用POST动词创建新资源,使用PUT动词更新资源,使用DELETE动词删除资源。5. 身份验证和授权:根据需要,在API端点中添加身份验证和授权机制,以确保只有授权用户可以访问和操作资源。
2024-12-19 09:53:11
304
微信小程序微约车详细信息填写demo完整源码下载
2019-02-20
springcloud_oauth2.0-master.zip
2021-12-19
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人