
电商推荐系统通过深度学习技术显著提升了推荐的精准性和多样性。以下是技术实现、典型案例及最佳实践的分析:
1. 技术实现框架
典型的深度学习推荐系统架构分为以下模块:
- 数据层:整合用户行为数据(点击、购买、收藏)、商品属性(类别、价格、描述)及上下文信息(时间、地理位置)。
- 特征工程:通过Embedding技术将高维稀疏特征(如用户ID、商品ID)映射为低维稠密向量,例如使用 v i = Embedding ( i d i ) v_i = \text{Embedding}(id_i) vi=Embedding(i