深度学习在电商推荐系统中的实现案例与技术解析

在这里插入图片描述

电商推荐系统通过深度学习技术显著提升了推荐的精准性和多样性。以下是技术实现、典型案例及最佳实践的分析:


1. 技术实现框架

典型的深度学习推荐系统架构分为以下模块:

  • 数据层:整合用户行为数据(点击、购买、收藏)、商品属性(类别、价格、描述)及上下文信息(时间、地理位置)。
  • 特征工程:通过Embedding技术将高维稀疏特征(如用户ID、商品ID)映射为低维稠密向量,例如使用 v i = Embedding ( i d i ) v_i = \text{Embedding}(id_i) vi=Embedding(i
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

悦观沧海

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值