深度学习在医疗影像诊断应用

以下关于深度学习在医疗影像诊断中的应用案例和技术实现的结构化说明:
在这里插入图片描述

一、典型应用案例

  1. 肺炎X光分类
    采用 R e s N e t − 50 ResNet-50 ResNet50架构实现胸部X光片二分类(肺炎/正常),准确率达92%。输入图像经标准化后通过残差块提取多层特征,最终由全连接层输出概率分布。

  2. 脑肿瘤MRI分割
    应用改进的 U - N e t U\text{-}Net U-Net模型,在BraTS数据集上获得Dice系数0.89。网络结构包含编码器-解码器路径,通过跳跃连接融合深浅层特征:
    L t o t a l = λ 1 L D i c e + λ 2 L F o c a l \mathcal{L}_{total} = \lambda_1\mathcal{L}_{Dice} + \lambda_2\mathcal{L}_{Focal} Ltotal=λ1LDi

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

悦观沧海

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值