使用Python爬取小说(多进程版)

博主改进了之前的Python小说爬虫程序,通过采用多进程方式显著提高了爬取速度,以解决单线程效率低的问题。由于Python的GIL锁限制,多线程无法充分利用多核优势。在多进程模式下,每个进程独立运行,避免了GIL的影响,实现类似多线程的并行效果。测试结果显示,改进后的爬虫每秒能爬取1.5到6章,但为了避免被服务器封禁,可能需要适当加入休眠机制。
摘要由CSDN通过智能技术生成

吐槽一下

前面写的爬取小说的程序,感觉爬起来太慢了,1秒钟才爬1章,因此我把它改成了多进程版的,至于为什么要用多进程而不用多线程,是因为Python有一个坑爹的GIL锁,就是有了这个玩意儿,使得Python的多线程的效率变得很低,因为GIL规定同一时刻只能有一个线程可以执行,因此Python的多线程并不是真正的多线程。但是多进程就不一样了,不同的进程访问的是不同的资源,各个进程之间可以互不影响,可以达到类似于多线程的效果。

话不多说,直接上代码:

import requests
import random
from lxml import etree
import os
import time
from multiprocessing import Process


# 爬取的主域名
HOST = 'http://www.biqugecom.com'
# User-Agent
user_agent = [
    "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/22.0.1207.1 Safari/537.1"
    "Mozilla/5.0 (X11; CrOS i686 2268.111.0) AppleWebKit/536.11 (KHTML, like Gecko) Chrome/20.0.1132.57 Safari/536.11",
    "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.6 (KHTML, like Gecko) Chrome/20.0.1092.0 Safari/536.6",
    "Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.6 (KHTML, like Gecko) Chrome/20.0.1090.0 Safari/536.6",
    "Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/19.77.34.5 Safari/537.1",
    "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/536.5 (KHTML, like Gecko) Chrome/19.0.1084.9 Safari/536.5",
    "Mozilla/5.0 (Windows NT 6.0) AppleWebKit/536.5 (KHTML, like Gecko) Chrome/19.0.1084.36 Safari/536.5",
    "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1063.0 Safari/536.3",
    "Mozilla/5.0 (Windows NT 5.1) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1063.0 Safari/536.3",
    "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_0) AppleWebKit/536.3 (KHTML, like Gecko) Ch
### 回答1: Python是一种非常流行的编程语言,它具有众多优势,包括易学易用、开发效率高等。在数据爬取方面,Python也具有相对优势,可以通过多线程和多进程来提高数据爬取效率。 多线程是一种将一个进程分为多个线程执行的技术,可以有效利用计算机的资源,同时完成多个任务。在数据爬取方面,可以将多个URL请求分配到不同的线程中去执行,从而实现同时请求多个URL,提高数据爬取速度和效率。 多进程则是将一个任务分为多个进程执行,每个进程有自己的资源和空间,在数据爬取方面,可以将不同的URL请求分配到不同的进程中去执行,这样可以充分利用计算机的多核处理器,同时完成多个任务,提高数据爬取效率。 在使用Python进行数据爬取时,需要根据实际的情况选用合适的多线程或多进程方式来处理数据,其中需要注意线程间共享资源的问题,尤其是多个线程同时访问同一份数据时需要进行合理的控制和调度。 总的来说,通过使用Python的多线程和多进程技术,可以有效提高数据爬取效率,从而更好的服务于数据分析和应用。 ### 回答2: 随着互联网的发展,数据量爆炸式增长,数据爬取成为了许多公司和个人必不可少的工作。而对于数据爬取而言,效率和速度是非常重要的因素。因此,在进行大规模数据爬取时,采用多线程或多进程技术可以大大提高爬取效率。 首先,我们来理解一下什么是多线程和多进程。多线程是在一个进程内开启多个线程,这些线程共享进程的资源,如内存等。多线程适合IO密集型的操作,如网络爬虫、文件读写等。而多进程则是在操作系统中开启多个进程,各自拥有独立的资源,如内存、文件等。多进程适合CPU密集型的操作,如图像识别、加密解密等。因此,在选择多线程还是多进程时,需要根据具体爬取任务进行考虑。 对于Python而言,它可以通过使用 threading 和 multiprocessing 模块来实现多线程和多进程,分别引入 Thread 和 Process 两个类。而在网络爬虫中,多线程运行多个爬取任务,可以大大提高页面的下载速度。在爬虫程序中,我们可以通过 Python 对于 urllib 和 requests 模块进行多线程异步请求,利用 Python 线程池 ThreadPoolExecutor 和 asyncio 模块的异步特性,实现高性能网络爬虫。 另外,在进行数据爬取时,需要注意反爬机制,如设置合适的请求头、降低请求频率等。同时,也需要注意保持数据的一致性和准确性。在使用多线程或多进程进行数据爬取时,也需要注意线程和进程间的交互和同步,如使用队列等数据结构进行数据共享、使用锁机制进行数据的同步等。 综上所述,Python 多线程多进程爬取大量数据可以提高爬取效率和速度,但也需要根据具体任务进行选择。同时,在进行数据爬取时需要注意反爬机制和数据的一致性和准确性,保证数据的安全和可信度。 ### 回答3: Python作为一种高级编程语言,在数据采集和分析方面具有优秀的表现。为了能更快地完成数据爬取任务,Python可以使用多线程和多进程方式。下面我们来介绍一下这两种方式具体的特点和使用方法。 首先,Python的多线程方式是通过创建多个线程来同时执行任务,这些线程共享同一个进程空间,因此可以用来提高数据爬取效率。在多线程模式下,每个线程都有自己的任务和数据,这些线程可以并行地执行,从而大大提升了数据爬取的速度。同时,多线程也可以实现类似于并发、异步的效果,因为每个线程都可以独立地进行访问和解析等操作。 然而,在Python使用多线程还是存在一些限制的。由于GIL(Global Interpreter Lock)的限制,多线程模式不能充分利用多核CPU的优势,因为这些线程都是在同一个进程中运行的,而GIL只允许有一个线程在同一时间内执行Python代码。因此,在需要利用多核CPU的情况下,需要使用多进程方式。 基于多进程的方式,可以将一个任务划分为若干个子任务,每个子任务运行在独立的进程中,它们之间互不干扰。这样,每个进程都可以利用独立的CPU核心来执行任务,从而提高了并发性和整体运行效率。而且,在多进程模式下,Python可以很好地利用操作系统的资源管理功能,同时能够充分利用硬件资源,实现高效的数据爬取。 总的来说,Python的多线程和多进程方式都可以用来实现数据爬取,并且都有各自的优点和适用场景。在实际应用中,应该根据任务的复杂度和硬件环境等因素来选择最适合的方式。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值