方法一:
$$ f(x)=\left\{
\begin{aligned}
x & = & \cos(t) \\
y & = & \sin(t) \\
z & = & \frac xy
\end{aligned}
\right.
$$
方法二:
$$ F^{HLLC}=\left\{
\begin{array}{rcl}
F_L & & {0 < S_L}\\
F^*_L & & {S_L \leq 0 < S_M}\\
F^*_R & & {S_M \leq 0 < S_R}\\
F_R & & {S_R \leq 0}
\end{array} \right. $$
方法三:
$$f(x)=
\begin{cases}
0& \text{x=0}\\
1& \text{x!=0}
\end{cases}$$
方法一:
f(x)={x=cos(t)y=sin(t)z=xy f(x)=\left\{ \begin{aligned} x & = & \cos(t) \\ y & = & \sin(t) \\ z & = & \frac xy \end{aligned} \right. f(x)=⎩⎪⎪⎨⎪⎪⎧xyz===cos(t)sin(t)yx
方法二:
FHLLC={FL0<SLFL∗SL≤0<SMFR∗SM≤0<SRFRSR≤0 F^{HLLC}=\left\{
\begin{array}{rcl}
F_L & & {0 < S_L}\\
F^*_L & & {S_L \leq 0 < S_M}\\
F^*_R & & {S_M \leq 0 < S_R}\\
F_R & & {S_R \leq 0}
\end{array} \right. FHLLC=⎩⎪⎪⎨⎪⎪⎧FLFL∗FR∗FR0<SLSL≤0<SMSM≤0<SRSR≤0
方法三:
f(x)={0x=01x!=0f(x)=
\begin{cases}
0& \text{x=0}\\
1& \text{x!=0}
\end{cases}f(x)={01x=0x!=0
本文深入探讨了三种不同的数学方法,包括参数方程的使用,HLLC通量公式的解析,以及分段函数的定义。每种方法都通过具体的数学表达式进行详细说明,为读者提供了一个全面理解这些数学概念的视角。
1万+

被折叠的 条评论
为什么被折叠?



