一个网络图虽然最大流确定,但达到最大流的方案并不唯一。如果对于每条边,都加一个费用f,表示这条边流过单位流量的代价,求达到最大流时的最小费用,这就是最小费用最大流问题。
解决方法:EK费用流或zwk费用流。这里只讲EK费用流。
采用贪心的思想。我们每次增广时都选择费用最小的一条。这样,因为最大流是确定的,因此最后结束时得到的一定是最大流;因为采用贪心的方法,所以费用一定最小。
具体操作:建图时反向边的费用为-f,因为撤销流量时要减小费用。每次增广时,先以每条边的单位流量代价为边权跑一遍spfa(不走剩余流量0的边)。如果能到达汇点,就在最短路进行增广(所有边减去瓶颈边剩余流量,反向边加上瓶颈边剩余流量,更新最大流和总费用),重复上述过程;如果不能到达,说明已达到最大流,算法结束。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
using namespace std;
const int maxn=5010;
const int maxm=50010;
const int INF=0x3f3f3f3f;
int n,m,S,T,maxflow,mincost;
int head[maxn],Ecnt;
struct edge{
int to,nxt,w,f;
}G[maxm*2];
inline void addE(int u,int v,int w,int f){
G[Ecnt]=(edge){v,head[u],w,f};
head[u]=Ecnt++;
G[Ecnt]=(edge){u,head[v],0,-f};
head[v]=Ecnt++;
}
int dis[maxn],pre[maxn],minw[maxn];
bool vis[maxn];
queue <int> Q;
bool spfa(){
memset(dis,0x3f,sizeof(dis));
Q.push(S),dis[S]=0,vis[S]=1,minw[S]=INF;
while(!Q.empty()){
int u=Q.front(); Q.pop(),vis[u]=0;
for(int i=head[u];i!=-1;i=G[i].nxt){
int v=G[i].to;
if(G[i].w==0) continue;
if(dis[u]+G[i].f<dis[v]){
dis[v]=dis[u]+G[i].f,pre[v]=i,minw[v]=min(minw[u],G[i].w);
if(!vis[v]) Q.push(v),vis[v]=1;
}
}
}
return dis[T]!=INF;
}
void update(){
int u=T;
maxflow+=minw[T],mincost+=dis[T]*minw[T];
while(u!=S) G[pre[u]].w-=minw[T],G[pre[u]^1].w+=minw[T],u=G[pre[u]^1].to;
}
void solve(){
while(spfa()) update();
}
int main(){
memset(head,-1,sizeof(head));
scanf("%d%d%d%d",&n,&m,&S,&T);
for(int i=1;i<=m;i++){
int u,v,w,f;
scanf("%d%d%d%d",&u,&v,&w,&f);
addE(u,v,w,f);
}
solve();
printf("%d %d\n",maxflow,mincost);
return 0;
}
本文介绍了一种解决最小费用最大流问题的算法——EK费用流。通过在每次增广时选择费用最小的路径,确保最终达到最大流的同时,总费用也是最小的。文章详细解释了算法的具体实现步骤,并提供了完整的C++代码示例。
4156

被折叠的 条评论
为什么被折叠?



